Articles by Kazi Hasan Ibn Arif

Faster Multimodal AI, Lower GPU Costs

HiRED: Cutting Inference Costs for Vision-Language Models Through Intelligent Token Selection

High-resolution Vision-Language Models (VLMs) offer impressive accuracy but come with significant computational costs—processing thousands of tokens per image can consume 5GB of GPU memory and add 15 seconds of latency. The HiRED (High-Resolution Early Dropping) framework addresses this challenge by intelligently selecting only the most informative visual tokens based on attention patterns. By keeping just 20% of tokens, researchers achieved a 4.7× throughput increase and 78% latency reduction while maintaining accuracy across vision tasks. This research, conducted on Chameleon's infrastructure using RTX 6000 and A100 GPUs, demonstrates how thoughtful optimization can make advanced AI more accessible and affordable.

Back