

www.chameleoncloud.org

Infrastructure for Edge to Cloud AI Research

Kate Keahey

University of Chicago / Argonne National Laboratory

keahey@uchicago.edu

MultiCore World, 02/17/25

CHAMELEON: AN EDGE TO CLOUD TESTBED

- Chameleons like to change testbed that adapts to your experimental needs
 - From bare metal reconfigurability/isolation -- KVM cloud to containers for edge (CHI@Edge)
 - Capabilities: power on/off, reboot, custom kernel boot, serial console access, etc.
- From large to small diversity and scale in hardware:
 - Supercomputing datacenters (UC/ALCF, TACC, NCAR) over 100G network to edge devices
 - **Diverse:** FPGAs, GPUs, NVMe, NVDIMMs, Corsa switches, edge devices via CHI@Edge, etc.
 - Distributed: CHI-in-a-Box sites at Northwestern and UIC and now also NRP!
- Based on mainstream open source proud to be cheap!
 - 50% leveraging and influencing OpenStack + 50% "special sauce" (incl. fed id)
- Promoting digital artifact sharing
 - Integration with Jupyter for non-transactional experiment packaging
 - Trovi for experiment sharing and discovery, Chameleon Daypass for access sharing
 - Reproducibility and education: digital sharing killer apps!

Coming soon: Dell XE9640, 2x Intel 9468 CPU / 4x Nvidia H100

CHAMELEON HARDWARE

EXPERIMENT STRUCTURE

Authentication via federated identity, accessed via GUI, CLI, and python-chi

Paper: "Lessons Learned from the Chameleon Testbed", USENIX ATC 2020

NOT JUST A TESTBED, A COMMUNITY

Supporting research projects in architecture, operating systems design, virtualization, power management, real-time analysis, security, storage systems, databases, networking, machine learning, neural networks, data science, and many others.

Grameleon www.chameleoncloud.org

Check out user experiment stories on our blog: https://www.chameleoncloud.org/blog/category/user-experiments/

Dur Goals and Guiding Princip

218

FROM CLOUD TO EDGE WITH CHAMELEON

federated learning

biometrics

Training			
Benign traffic flows of device flow1 flow2 flow3 i flown	Nilsimsə hash generator	Benign signatures of device Signature1 Signature2 Signaturen T± €	
Online detection			
flow New traffic flow of the device	\rightarrow	Hash of the new traffic flow	$\overline{\mathbf{b}}$
Compute averag and	e similarity score to b compare with thresl	enign signatures rold	esult

network traffic fingerprinting for IoT devices

- Increasingly more Chameleon project applications working on IoT/edge
- Simulation/emulation don't always provide the answer: What are the impacts of this approach on power management on edge device? How will the performance transfer to edge? Can we measure the impact of distribution/networking for edge/cloud applications?
- Goal: "realistic edge to cloud experiments from one Jupyter notebook"

PROGRAMMABLE WITH CHI@EDGE

Not at all like a cloud! Location, location, location! IoT: cameras, actuators, SDRs! Not server-class! And many other challenges!

- CHI@Edge: all the features you love in CHI, plus:
 - Reconfiguration through non-prescriptive container deployment via OpenStack interfaces (using K3 under the covers)
 - Support for "standard" IoT peripherals (camera, GPIO, serial, etc.) + easy for you to add support for your own peripherals
 - Bring Your Own Device (BYOD): Mixed ownership model via an SDK with devices, virtual site, and restricted sharing building on OpenBalena

Paper: "Chameleon@Edge Community Workshop Report", 2021

FROM EXPLORATION TO OBSERVATION: THE FLOTO PROJECT CASE STUDY

- Why broadband monitoring?
 - Technical questions: what happens in conditions of oversubscription?
 - Policy questions: can we characterize the "digital divide" in our society?
 - Modeling questions: what assumptions about broadband are realistic?
- Measuring broadband different approaches/applications depending on context, objective, use case, etc.
 - Netrics: open-source library of standard network diagnostic tools (ndt7, speedtest, ping, traceroute, etc.) for continuous, longitudinal network measurement
 - Others: e.g., residential versus rural broadband and other use cases
- Can we use CHI@Edge as a large observatory instrument for broadband monitoring?
- Approach: connect a "measurement box" to the router and run tests
- Collaboration with Nick Feamster & his UChicago team

THE DEVICES

- Raspberry Pi 4 (8GB)
- Additional Components
 - MicroSD Cards (32GB)
 - CAT 6 Ethernet Cable
 - Power Cord
- Optional: PoE+ HATs to enable deployment in locations with scarce power sources
- Inventory: 1,000 devices finished arriving at the end of June'23
- Allocations via a device request form

DEVICE MANAGEMENT LAYER

- Onboard, offboard, and repurpose devices
- Devices self-enroll
 - 0 touch device enrollment (after imaging)
 - Alternatively, flash with our image to enroll your own device
- Configuration management
 - Update and deploy without physical access, stateless, vetted images, includes software and device configuration, can be pinned to releases
 - OpenBalena + "special sauce"
- Robust remote management features
 - View status and statistics, create and manage deployments, trigger appropriate actions (e.g., send mail), dashboard and CLI interfaces
- ▶ HA control plane, federated identity login, etc.

Count	Heartbeat State	VPN connected	Status	Provisioning State	OS Version	Supervisor Version	Release	Fleet	Devices
1	online	True	Idle		balenaOS 2.105.1+rev1	14.2.0	test2	Floto Testing	Details
14	offine	False					51	bootstrap	Details
6	online	True							Details
3	offine	False			balenaOS 2.113.18	14.9.4			Details
3	online	False			balenaOS 2.105.1+rev1	14.2.0			Details
2	offine	False					53		Details
2	online	True							Details
6	unknown	False	None	None	None	None	None	esnet	Details
2	offine	False	Idle		balenaOS 3.1.1	14.11.12	177		Details
1	offine	False			balenaOS 2.105.1+rev1	14.2.0	73	experiment	Details
29	online	True					125	floto	Details
4	offline	False					netrics		Details
1	offline	False					125		Details
5	online	True					172	floto-k3s	Details
1	offline	False					170		Details
4	online	True					None	floto-staging	Details

Devices Fleets Releases		keshey@uchicago.edu topout
Device "floto-H03-803B" Name: Ref-H03-803 UDD: EXAD327062070exe6A450cd287191968 Logs EXAD327062070exe6A450cd287191968	Temp SPC CPU 575 Mempy 2105 Durage 8.0%	_
Heartbeat State	online since 2023-08-05710:53:41.692Z	
VPN connected	True since 2023-08-05T10:53:41.692Z	
Status	Idle	
Provisioning State		
OS Version	balenaOS 2.105.1+rev1	
Supervisor Version	14.2.0	
Release	125	
Fleet	flato	
IP address	128.135.150.132	
MAC address	E4:5F:01:AC:E3:8C:AE:AA:88:9D:8A:7A	
actions		
Command uptime Run		

APPLICATION MANAGEMENT LAYER

- Supports deployment of applications on device fleets via a system container
- Applications are packaged as Docker containers and reviewed
- Users can reserve overlapping or nonoverlapping timeslots for application deployment so as not to conflict with other deployments
- Generic data streaming implemented as a "system application"
- Multi-container applications deployed via docker-compose syntax

DATA COLLECTION AND ANALYTICS

- Software on devices uploads results directly to cloud storage
- Data curation and analysis pipelines process raw data for investigation
- Raw and processed data available for use (after anonymization)
- Current, small scale, using AWS Lambda for analysis
- After scale up, use Apache Kafka as message broker, data consumers will subscribe to real time topics for up to date results
- Grafana dashboards with time-series visualizations to monitor data in near real-time

Paper: "Discovery Testbed: An Observational Instrument for Broadband Research", eScience'23

INSTRUMENT ADAPTABILITY

What knobs can I turn on this instrument?

- Deployment scope: deploy the devices in a different area
- Application: adapting "sensing abilities" programmatically
- Hardware: combine devices with different IoT gadgets (e.g., GPS)
- Data aggregation: different methods for different applications
- Data: ask different questions of the data

FLOTO: DEPLOY DEVICES IN DIFFERENT AREAS

~500 devices deployed across multiple states Notable deployments:

- Chicago (180+ devices)
- Milwaukee (200+ devices)
- Marion County, IL; Beaver Island, MI -and others

As a distributed community, we rely on trust and deep partnerships to bring infrastructure where it is needed most

- Building trust with communities
- Managing devices remotely (with many participants)
- Coordinating large-scale distribution

FLOTO: RUN A DIFFERENT APPLICATION

Applications Deployed on FLOTO to Date:

Each application provides different methods for broadband measurement depending on research interest

- Netrics: Broadband performance measurements to study access networks
- RADAR Toolkit: QoE measurements for telehealth applications
- NetUnicorn: Data pipeline experiments
- Georgia Tech: IPv6 Performance Studies
- M-Lab: Measurement Swiss Army Knife (MSAK) integration
- ARA: Monitoring 5G wireless performance in rural areas

FLOTO: MINE THE DATASET

- ~18M million measurements collected since Oct. 2022
- What Measurements? Time series speed tests, latency, DNS performance, network paths on fixed connection (no WiFi bias)
- Spans 17 different network providers
- Multiple access technologies (fiber, cable, satellite, fixed wireless)
- Data is publicly available via project website
- Proposed as NAIRR dataset for working with projects like e.g., anomaly detection

FLOTO: CASE STUDIES

Computer Science questions: IPv4 versus IPv6

- Objective: Understand how Internet speed varies between IPv4 and IPv6'
- Method: sequential speed tests comparing IPv4 and IPv6 results under similar conditions
- Early Findings: IPv4 and IPv6 speeds degrade differently under various conditions, influenced by the ISP (SIGMOD paper in preparation)
- Policy questions: Marion County
 - Objective: Improve internet infrastructure and performance in Marion County, Illinois
 - Method: Deploy FLOTO devices to collect and analyze broadband performance data
 - Finding: 32% of sampled households below the federal threshold -- data used to support grant applications for fiber broadband expansion

MEASURING RURAL WIRELESS

- Collaboration with ARA project
- Assessing the quality of rural 5G networks
 - Measuring device to device latency
 - Clock synchronization
 - Comparing over different network fabrics
- Deployed 6 Raspberry Pi devices with 5G connectivity in rural Iowa
- Latency measurements: GPS-based time synchronization for precise measurements (4000x more precise than NTP over 5G)
- Tested using Hadoop
- Hey presto: 5G networks can support distributed computing with performance comparable to wired connections!

Zack Murry, University of Missouri

NCAR WEATHER SENSING STATIONS

- openIoTwx: NCAR 3D printed weather stations
- Richer continuum: IBIS SBCs connecting to openIoTws via LoRa
 - Exploring power (4x factor), connectivity (cellular vs aggregation via LoRa), sensing (additional camera sensors), and processing (to e.g., reduce size of data) trade-offs
- Future challenges
 - Image-based weather prediction methods, scaling up to create dense, high-resolution weather monitoring networks, and assessing long-term reliability in diverse outdoor environments

William Fowler, Tufts University

SENSOR STATIONS FOR MARINE AND COASTAL ECOSYSTEMS

- Smart buoy system: sensor stations for oceanic data collection (water quality, water movement, water levels, etc.)
- Collaboration with FIU
- Integrated multiple environmental sensors with IBIS infrastructure
- Demo deployment with real and simulated data
- Implemented cloud-based data visualization system
- Collaboration with FIU

Chameleon www.chameleoncloud.org

Julia Harper, Loyola University

AUTOLEARN

- Chameleon notebooks based on the DonkeyCar package
- Students learn in three stages:
 - Data collection actual/simulator edge to cloud
 - Model training in the cloud
 - Verification via autonomous driving actual/simulator edge to cloud
- Supports different emphasis in teaching
 - Introduction to engineering might emphasize driving the actual car
 - Machine learning focus might use the simulator
- Individual exploration:
 - E.g., digital twin combining simulator and experimental driving

Paper: "AutoLearn: Learning in the Edge to Cloud Continuum", EduHPC'23

REU 2023 students working on hardware setup for autonomous vehicles

AND OTHERS...

- Predicting air quality with federated learning
- Soundscaping and forestry data analysis
- Precision agriculture: optimizing greenhouse environments
- Meteorologic monitoring system for ML-based weather forecasts
- And more...

PARTING THOUGHTS

- AI has opportunities at the edge
 - Bi-directional interaction with the environment, intelligent data collection and processing, federated learning, etc.

Edge to cloud continuum

- Hardware/capability continuum, configuration continuum, connectivity continuum, power continuum, processing continuum, etc.
- Operations continuum not just for specialists anymore
- CHI@Edge captures a general-purpose continuumRI instrument pattern
 - Some things are the same: e.g., management of heterogenous components at scale, interactions with datacenter
 - Some things are different: e.g., installation considerations like casing, deployment strategies

FOR BETTER OR WORSE, SCIENTIFIC INSTRUMENTS SHAPE A FIELD

research highlights

Technical Perspective For Better or Worse, Benchmarks Shape a Field

By David Patterson

LIKE OTHER IT fields, computer architects initially reported incomparable results. We quickly saw the folly of this approach. We then went through a sequence of performance metrics,

a victim of its own success. The SPEC organization has been selecting old programs written in old languages that reflect the state of programming in the 1980s. Given the 1,000,000X improve-

Given this measurement framework, the authors then measured eight very different Intel microprocessors built over a seven-year period. The authors evaluate these eight micropro-

DOI:10.1145/2209249.2209271

The ability to deploy, observe, measure and record

"Common denominator": the ability to create and compare

Evolution: follow the debate

We're here to change

www.chameleoncloud.org

