Cyber-Physical and Real-Time

NSFCloud Workshop Warren Smith, Mike Zink

Participants

 Joseph Kizza, Ting Zhu, Glenn Ricart, Sekou Remy, Mario Gerla, William Beksi, Arun Ravindran, Satya Sahoo, Muthu V., Paul Fikkema

The Cloud is a CPS!!

- Cooling, power, networking, buildings,
- Instrumentation and control points for power usage (subsystem level).
- Temperature profiles

Group Membership

- Using cloud to do CPS in real-time
- Very interested in how to build cloud to do that but not necessarily working on it
- Application researchers

Data Set Repository

- Application (road traffic, FMRI, weather, etc.)
- System level datasets (power, temperature, network)
- Using several different data sets together

Quick provisioning (seconds) to respond to events.

- Research problems:
 - Get virtual machines running very quickly
 - Push lower priority work out of the way
- Needed to investigate how to provide this:
 - Centralized storage
 - SSDs
 - Bare metal
 - Ability to change hypervisor priorities (e.g. start an image that is pre-loaded into memory)
- Modify cloud schedulers

Latency & jitter investigations (e.g. robotics)

- 300ms is ok for one
- 40ms is detectible by humans
- Needed to investigate this problem:
 - OpenFlow
 - Different switches
 - Tools to measure & diagnose where the latency/jitter is added (which machines, networks, software, etc.)
 - Tools to inject latency and jitter (network, compute, disk i/o)

Needed for Research

- Ability to move large data in (e.g. fMRI data)
 30 MB/S, higher?
- Ad-hoc cloud (e.g. cars nearby each other) and interaction with "public" cloud.
 - Fault tolerance
 - Use local if you have to, but more capabilities available if can access a larger cloud

Needed for Research

- GPUs (FPGAs?)
 - Encryption, FMRI
- Ability to spin down disks
- Failure simulation
 - Ad-hoc cloud (e.g. cars nearby each other) and interaction with "public" cloud.
- Mobile cloud (cellular, wireless)

... and some more

- Access to newer hardware.
- Many instances to model many physical objects (e.g. millions of cars).
- Managing data centers, particularly using external information (e.g. cost of power).