

www. chameleoncloud.org

CHAMELEON:

A LARGE-SCALE, RECONFIGURABLE EXPERIMENTAL ENVIRONMENT FOR CLOUD RESEARCH

Principal Investigator: Kate Keahey

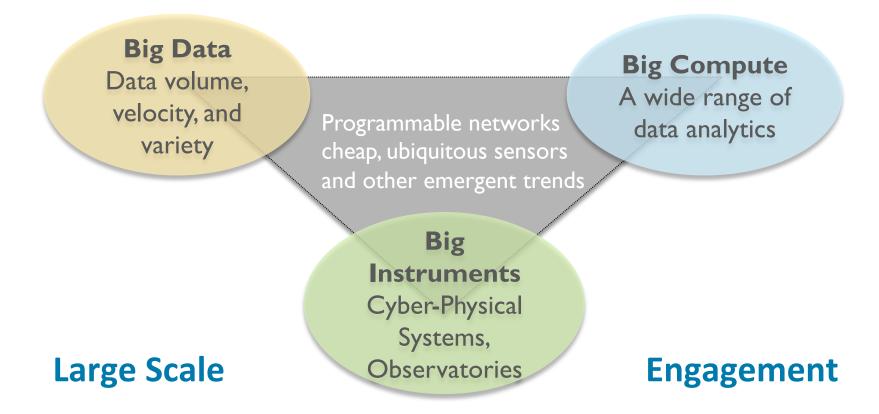
Co-Pls: J. Mambretti, D.K. Panda, P. Rad, W. Smith, D. Stanzione

MAGIC Meeting February, 2014, Arlington, VA

MARCH 10, 2015

WHY EXPERIMENT?

"Beware of bugs in the above code;


I have only proved it correct, not tried it"

(Donald Knuth)

"In theory there is no difference between theory and practice. In practice there is." (Yogi Berra)

SCALING TO THE CHALLENGE

Reconfigurability

Connectedness

CHAMELEON: A FLEXIBLE AND POWERFUL EXPERIMENTAL INSTRUMENT

- ► Large-scale: "Big Data, Big Compute, Big Instrument research"
 - ► ~650 nodes (~14,500 cores), 5 PB disk over two sites, 2 sites connected with 100G network
- Reconfigurable: "As close as possible to having it in your lab"
 - ▶ Bare metal reconfiguration, single instrument, Chameleon appliances
 - Support for repeatable and reproducible experiments
- Connected: "One stop shopping for experimental needs"
 - Workload and Trace Archive
 - Partnerships with production clouds: CERN, OSDC, Rackspace, Google, and others
 - Partnerships with users
- Complementary: "Can't do everything ourselves"
 - ► Complementing GENI, Grid'5000, and other experimental testbeds

CHAMELEON HARDWARE

To UTSA, GENI, Future Partners

Switch

Standard **Cloud Unit**

42 compute

4 storage

x2

Core Services Front End and Data **Mover Nodes**

48 Dist. Storage Servers 102 Heterogeneous Servers **16 Mgt and Storage Nodes**

504 x86 Compute Servers

Chameleon Core Network

100Gbps uplink public network (each site)

Chicago Austin

SCUs connect to core and fully connected to each other

Switch

Standard

Cloud Unit

42 compute

4 storage

x10

Core Services

3.6 PB Central File Systems, Front End and Data Movers

Heterogeneous **Cloud Units Alternate Processors** and Networks

CAPABILITIES AND SUPPORTED RESEARCH

Development of new models, algorithms, platforms, auto-scaling HA, etc., innovative application and educational uses

Persistent, reliable, shared clouds

Repeatable experiments in new models, algorithms, platforms, auto-scaling, high-availability, cloud federation, etc.

Isolated partition, Chameleon Appliances

Virtualization technology (e.g., SR-IOV, accelerators), systems, networking, infrastructure-level resource management, etc.

Isolated partition, full bare metal reconfiguration

SOFTWARE: CORE CAPABILITIES

Persistent Clouds

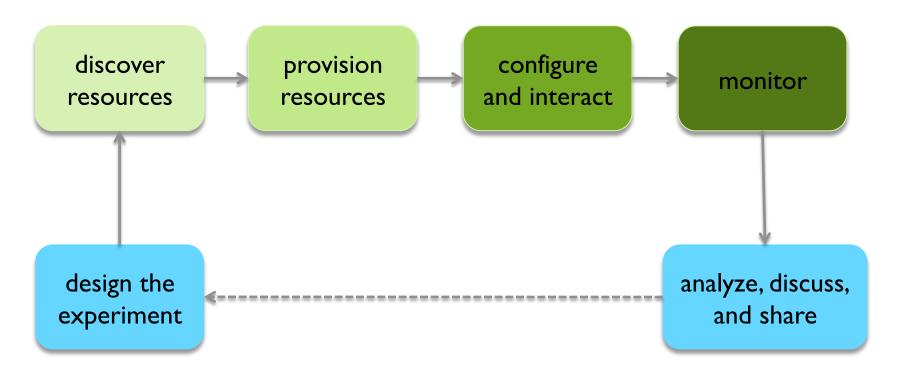
(OpenStack)

Persistent Cloud

User Clouds

Chameleon Appliance Catalog

A library of generic, special-purpose, and educational environments


Discovery, Provisioning, Configuration, and Monitoring

Testbed representation and discovery (Grid'5000) Nova/Blazar, Ironic, Neutron, Ceilometer (OpenStack, Rackspace OnMetal)

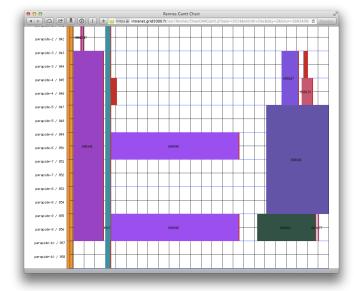
SUPPORT FOR EXPERIMENT WORKFLOW

SELECTING AND VERIFYING RESOURCES

- Complete and current representation of actual testbed resources
- Fine-grained representation
- Machine parsable, enables match making
- Versioned
 - "What was the drive on the nodes I used 6 months ago?"
 - ► Hardware upgrades, maintenance, extensions
- Dynamically Verifiable
 - ▶ Does reality correspond to description? (e.g., failures)
 - Can't afford false assumptions!

RESOURCE CATALOG

- ► Grid'5000 Registry
 - ► Largely automated resource discovery and fine-grained description
 - Browseable: REST, CLI, and web interfaces
 - Match making
 - Automated description export for the Resource Manager
- ► G5K-checks
 - ► Run at node boot and acquire information on node using ohai, ethtool, etc.
 - Compare with resource catalog description


```
"processor": {
  "cache l2": 8388608,
  "cache l1": null,
  "model": "Intel Xeon",
  "instruction_set": ""
  "other description": "",
  "version": "X3440",
  "vendor": "Intel",
  "cache lli": null,
  "cache lld": null,
  "clock speed": 2530000000.0
"uid": "graphene-l",
"type": "node",
"architecture": {
  "platform type": "x86 64",
  "smt size": 4,
  "smp size": 1
"main memory": {
  "ram size": 17179869184,
  "virtual size": null
"storage devices": |
    "model": "Hitachi HDS72103",
    "size": 298023223876.953,
    "driver": "ahci",
    "interface": "SATA II",
    "rev": "JPF0"
    "device": "sda"
],
```

PROVISIONING RESOURCES

- ► Resource leases
- Allocating a range of resources
 - Different node types, switches, etc.
- Multiple environments in one lease
- Advance reservations (AR)
 - Sharing resources across time
- ► Eventually: match making, Gantt chart displays

Extensions to support working with more resources, match making, and displays

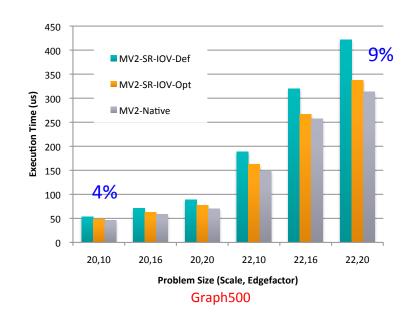
CONFIGURE AND INTERACT

- ► Map multiple appliances to a lease
- Allow deep reconfiguration (incl. BIOS)
- ▶ Snapshotting
- Efficient appliance deployment
- ► Handle complex appliances
 - ▶ Virtual clusters, cloud installations, etc.
- ► Interact: reboot, power on/off, access to console
- Shape experimental conditions
- OpenStack Ironic, Glance, and meta-data servers

MONITORING

- Enables users to understand what happens during the experiment
- ► Types of monitoring
 - User resource monitoring
 - ► Infrastructure monitoring (e.g., PDUs)
 - Custom user metrics
- ► High-resolution metrics
- Easily export data for specific experiments
- OpenStack Ceilometer

NETWORKING CAPABILITIES


- Expose SDN, OpenFlow, etc. to users
 - Isolation
 - Hybrid network capabilities
 - Programmable topologies
 - ► Integration with other resources within and external to the testbed
- Pushing 100G network to the limit
 - Using 100G + SDN optimally is a challenge
 - Chameleon appliances and services allow experimenters a highly granulated view into -- and control over -- traffic flows
- Integration with GENI
 - Data plane integration
 - Control plane integration
 - Common policy context

HIGH PERFORMANCE NETWORKS

- Support virtualization for Big Compute and Big Data
- ► Chameleon Appliances:
 - HPC MPI with IB & SR-IOV
 - ► Hadoop with SR-IOV
 - ► Integration with OpenStack, etc.
- ► Further support for Big Data and Big Compute

Application-Level Performance (8 VM * 8 Core/VM)

EDUCATION

- New courses with new content
 - Electronic textbooks, multi-media content, and Chameleon Appliances
 - ► Graduate courses for Fall 2015: CS6463 (Cloud and Big Data), CS6643 (Parallel Processing), ECE5243 (Data Analytics in Cloud), CS 6393 (Advanced Topics in Computer Security), and others
- Broaden a Cloud Education Community by Reaching out to the MSI network and other institutes
- General education: MOOCs and other content
- ► Chameleon-specific training and training materials

INDUSTRY OUTREACH

- Fostering relationship between academia and industry
 - ► Industry Board: explore synergy between industry and academia
 - Facilitating industry-sponsored research projects
 - ► Interoperability with industry standards
 - Commercialization
- Workload and Track Archive

OUTREACH AND ENGAGEMENT

- Advisory Bodies
 - ► Research Steering Committee: advise on capabilities and priorities needed to investigate upcoming research challenges
 - Industry Advisory Board: explore synergy between industry and academia
- ► Early User Program
 - Committed users, driving and testing new capabilities, enhanced level of support
- ► Chameleon Workshop
 - Annual workshop to inform, share experimental techniques solutions and platforms, discuss upcoming requirements, and showcase research

PROJECT SCHEDULE

- ► Fall 2014: FutureGrid@Chameleon is ready!
- Spring 2015: Initial bare metal reconfiguration capabilities available on FutureGrid UC&TACC resources for Early Users
- ► <u>Summer 2015</u>: New hardware: large-scale homogenous partitions available to Early Users
- ► Fall 2015: Large-scale homogenous partitions and bare metal reconfiguration generally available
- ► 2015/2016: Refinements to experiment management capabilities, higher level capabilities
- ► Fall 2016: Heterogeneous hardware available

FUTUREGRID@CHAMELEON

- Chameleon Portal
 - ► FG users can import their projects and accounts
 - ► FG user data (accounts, images, volumes, etc.) will be reactivated with account
 - Available generally by end of year
- ► Hotel (UC) and Alamo (TACC) configured FG-style
 - OpenStack Juno with KVM images
 - Available via a single interface as OpenStack regions (replicated Keystone)
 - The same set of images available for both

THE TESTBED IS THERE - JUST ADD RESEARCH!

- ► Large-scale, responsive experimental testbed
 - ► Targeting critical research problems at scale
- ► Reconfigurable environment
 - Support use cases from bare metal to production clouds
- One-stop shopping for experimental needs
 - ▶ Trace and Workload Archive
- ► Engage the community
 - ► The most important element of any experimental testbed is users and the research they work on
 - Chameleon appliances, contributing experience and tools
 - Community feedback for evolution

