

www. chameleoncloud.org

PLATFORM FOR INNOVATING IN THE EDGE TO CLOUD CONTINUUM

Kate Keahey

Mathematics and CS Division, Argonne National Laboratory

CS Department, University of Chicago

keahey@uchicago.edu

OpenInfra Days at North America, October 2024

CHAMELEON: AN EDGE TO CLOUD TESTBED

- Chameleons like to change testbed that adapts to your experimental r
 - ► From bare metal reconfigurability/isolation -- KVM cloud to containers for edge (CHI@Edge)
 - Capabilities: power on/off, reboot, custom kernel boot, serial console access, etc.
- ▶ From large to small diversity and scale in hardware:
 - Supercomputing datacenters (UC/ALCF, TACC, NCAR) over 100G network to edge devices
 - Diverse: FPGAs, GPUs, NVMe, NVDIMMs, Corsa switches, edge devices via CHI@Edge, etc.
 - Distributed: CHI-in-a-Box sites at Northwestern and UIC and now also NRP!
- Based on mainstream open source proud to be cheap!
 - 50% leveraging and influencing OpenStack + 50% "special sauce" (incl. fed id)

- Promoting digital artifact sharing
 - Integration with Jupyter for non-transactional experiment packaging
 - Trovi for experiment sharing and discovery, Chameleon Daypass for access sharing
 - Reproducibility and education: digital sharing killer apps!

FROM CLOUD TO EDGE WITH CHAMELEON

biometrics

network traffic fingerprinting for IoT devices

- Increasingly more Chameleon project applications working on IoT/edge
- Simulation/emulation don't always provide the answer: What are the impacts of this approach on power management on edge device? How will the performance transfer to edge? Can we measure the impact of distribution/networking for edge/cloud applications?
- ► Goal: "realistic edge to cloud experiments from one Jupyter notebook"

HIGHLIGHT: CHI@EDGE

A lot like a cloud! All the features we know and love – but for edge! "Edge to cloud from one Jupyter notebook."

Not at all like a cloud! Location, location, location! IoT: cameras, actuators, SDRs! Not server-class! And many other challenges!

- CHI@Edge: all the features you love in CHI, plus:
 - Reconfiguration through non-prescriptive container deployment via OpenStack interfaces (using K3 under the covers)
 - Support for "standard" IoT peripherals (camera, GPIO, serial, etc.) + easy for you to add support for your own peripherals
 - Bring Your Own Device (BYOD): Mixed ownership model via an SDK with devices, virtual site, and restricted sharing – building on OpenBalena

Paper: "Chameleon@Edge Community Workshop Report", 2021

FLOTO: GIVING BROADBAND MEASUREMENT AN EDGE

- Scientific instrument for measuring broadband
- Deploy 1,000 Pis nationwide (~500 so far)
 - Chicago, IL; Milwaukee, WI; San Rafael, CA
 - Marion County, IL; Beaver Island, MI -- and others
- Measurement Applications
 - Netrics; Measurement Lab's (MLab) Measurement Swiss Army Knife (MSAK) toolkit; RADAR toolkit; NetUnicorn; rural broadband tests (ARA) – and others
- Data
 - 11M data points, spanning 17 providers (national and local), across multiple different technologies
 - Publicly available on FLOTO website
- How powerful is this dataset?
 - Marion County: 32% of sampled households below 25/3
 Mbps federal threshold
 - Beaver Island: area challenge to FCC -> reassessment of broadband coverage

floto.cs.uchicago.edu

MEASURING RURAL WIRELESS

- Collaboration with ARA project
- Assessing the quality of rural 5G networks
 - Measuring device to device latency
 - Clock synchronization
 - Comparing over different network fabrics
- Deployed 6 Raspberry Pi devices with 5G connectivity in rural lowa
- Latency measurements: GPS-based time synchronization for precise measurements (4000x more precise than NTP over 5G)
- Tested using Hadoop
- Hey presto: 5G networks can support distributed computing with performance comparable to wired connections!

NCAR WEATHER SENSING STATIONS

- openIoTwx: NCAR 3D printed weather stations
- Richer continuum: IBIS SBCs connecting to openIoTws via LoRa
 - Exploring power (4x factor), connectivity (cellular vs aggregation via LoRa), sensing (additional camera sensors), and processing (to e.g., reduce size of data) trade-offs
- Future challenges
 - Image-based weather prediction methods, scaling up to create dense, high-resolution weather monitoring networks, and assessing long-term reliability in diverse outdoor environments

SENSOR STATIONS FOR MARINE AND COASTAL **ECOSYSTEMS**

- Smart buoy system: sensor stations for oceanic data collection (water quality, water movement, water levels, etc.)
- Collaboration with FIU
- Integrated multiple environmental sensors with IBIS infrastructure
- Demo deployment with real and simulated data
- Implemented cloud-based data visualization system
- Collaboration with FIU

AUTO LEARN

- Can I experiment with self-driving cheaply? Can I teach edge to cloud AI concepts in a class in an engaging manner?
- AutoLearn Trovi artifact
 - Data collection (actual car versus simulator)
 - A library of ML modules
 - Verification via self-driving (actual car versus simulator)
- Different emphasis
 - Introduction to engineering
 - Machine learning with just the simulator
- Lots of scope for individual exploration

Paper: "AutoLearn: Learning in the Edge to Cloud Continuum", EduHPC'23

REU 2023 students working on hardware setup for autonomous vehicles

AND OTHERS...

- Predicting air quality with federated learning
- Soundscaping and forestry data analysis
- Precision agriculture: optimizing greenhouse environments
- Meteorologic monitoring system for ML-based weather forecasts
- ► And others...

SHARING SCIENCE DIGITALLY

- Can digital experiments be as sharable as papers are today?
- Can I simply integrate somebody's model into my research instead of reinventing the wheel and get to a new result faster?
- Can I discover something new through playing with somebody else's experiment?
- Can I develop exercises for my class based on most recent research results?
- Should our next Program Committee meeting be a reproducibility hackathon?

https://repeto.cs.uchicago.edu

5TH CHAMELEON USER MEETING (REPRODUCIBILITY)

- What is still a challenge for packaging and reproducing systems experiments?
 - Gather authors/reviewers from reproducibility initiatives relying on Chameleon (SC24 in particular)
 - Report and path forward on how to support reproducibility for computer science
 - Can we create a
- Date: November 18, 2024, Atlanta (same week as big SC conference)
- Keynote: Torsten Hoefler
- Details and registration in the announcement section of the Chameleon website or reproduciblehpc.org

PARTING THOUGHTS

- Edge to Cloud: unprecedented access to observational data (and some analysis) combined with strong computational capabilities in the cloud
- ▶ It really takes a village
 - Partnerships with FABRIC, NRP, and PAWR projects to add a different dimension
- The different facets of continuum
 - Hardware/capability continuum, power continuum, configuration continuum, operational expertise continuum, connectivity continuum, processing continuum, etc.
- Configuration continuum: bare metal versus virtualization faceoff
- Working with the community on making great research reproducible!

www.chameleoncloud.org