
Application-based QoE support with P4 and
OpenFlow

Divyashri Bhat∗†, Jason Anderson†, Paul Ruth‡, Michael Zink∗ and Kate Keahey§
University of Massachusetts Amherst∗, University of Chicago†, RENCI‡, Argonne National Labs §
∗dbhat,zink@ecs.umass.edu, †jasonanderson@uchicago.edu, ‡pruth@renci.org, §keahey@mcs.anl.gov,

Abstract—Although Software-Defined Wide Area Networks
(SD-WANs) are now widely deployed in several production
networks, they are largely restricted to traffic engineering ap-
proaches based on layer 4 (L4) of the network protocol stack
that result in improved Quality-of-Service (QoS) of the network
overall without necessarily focussing on a specific application.
However, the emergence of application protocols such as QUIC
and HTTP/2 needs an investigation of layer 5-based (L5) ap-
proaches in order to improve users’ Quality-of-Experience (QoE).
In this paper, we leverage the capabilities of flexible, P4-based
switches that incorporate protocol-independent packet processing
in order to intelligently route traffic based on application headers.
We use Adaptive Bit Rate (ABR) video streaming as an example
to show how such an approach can not only provide flexible
traffic management but also improve application QoE. Our
evaluation consists of an actual deployment in a research testbed,
Chameleon, where we leverage the benefits of fast paths in order
to retransmit video segments in higher qualities. Further, we
analyze real-world ABR streaming sessions from a large-scale
CDN and show that our approach can successfully maximize
QoE for all users in the dataset.

I. INTRODUCTION

While application protocols such as HTTP have evolved to
provide reduced latency and efficient use of network resources
[1], traffic engineering paradigms such as Software Defined
Networking (SDN) have simultaneously emerged to provide
better Quality-of-Service (QoS) through flexible routing and
centralized network management. Several large-scale produc-
tion Content Distribution Networks (CDNs) such as Google
[2] have implemented Software-Defined Wide Area Networks
(SD-WANs) to efficiently perform application-aware routing
at the peering edge. Cisco [3], predicts that downstream
application traffic will account for 82% of all Internet traffic
by 2021. Moreover, the same report predicts that SD-WAN
traffic will account for 25% of all WAN traffic by 2021.

On the application layer, HTTP/2 incorporates several im-
provements over its predecessor, HTTP/1, which include a)
multiplexing several streams into one TCP connection, b)
server-push approaches, where content is delivered to a client
without explicitly requesting it, and c) header compression
for reduced latency. These improvements, particularly stream
multiplexing, were devised to reduce page load time such
that download requests for embedded objects such as images,
video, etc., in a web page can be issued simultaneously
(instead of sequentially). Similarly, the QUIC [4] protocol was
introduced as a transport layer candidate for HTTP/2 with one
basic difference: QUIC is based on UDP and can thus, be used

original
transmission

Quality level

151
buffer in # of

segments2 3

1

2

3

4

4

5 6 7 8 9 10 11 12 13 14

5

6

7

8

1

re-
transmission

2

3 4

Number indicates priority
of segments for
retransmission

Original gap
(1 segment length).
Need to retransmit

segment 3 (8) at quality
level 6 to closegap.

Original gap
(2 segment lengths).

Need to retransmit segments 13 & 14
at quality level 4 to close gap

Fig. 1: Example scenario for retransmissions. The QoE of this
streaming session can be improved if, e.g., segments 3, 8, 13,
and 14 are retransmitted in higher quality, assuming they arrive
before their scheduled playout.

to implement flexible congestion control as well. As protocols
become more versatile to support high-bandwidth applications
such as Adaptive Bit-Rate (ABR) video streaming, Augmented
Reality (AR) and Virtual Reality (VR) applications, network
architectures need to adapt in order to meet the demands of
such applications worldwide. More recently, the introduction
of flexible switch architectures such as [5] have paved the way
for line-rate processing of application-layer headers [6]. Our
architecture investigates application-based QoS in centrally
controlled networks. In particular, this work leverages the
capability of protocol-independent packet processors (P4) [5]
at the edge of the network to define a custom fixed-length
application header and further, translate this into a Q-in-Q
(802.1ad) tag [7] for the core network in order to perform
QoS routing/provisioning.

The remainder of this paper provides a background of
applications such as video streaming that can benefit from our
approach in Sect. II. A detailed description of our architecture
is given in Sect. III, followed by our Chameleon testbed setup
description in Sect. IV. We then present an evaluation of our
prototype in Sect. V followed by the Conclusion in Sect. VI.

II. BACKGROUND

While we envision that several applications today can
benefit from application header-based traffic engineering using
P4, in this work we target popular applications such as video
streaming in order to demonstrate the gains of our approach.

Fig. 2: Tile-based Virtual Reality (VR) video streaming. A
viewport is characterized by multiple adjacent tiles that need to
be simultaneously downloaded in order to provide a seamless
viewing experience to the user.

First, we focus on ABR video streaming as an example and
use Figure 1 to show a simplified example of segment qualities
inside the video player buffer with different possible quality
gaps. In previous work [8], we demonstrated how HTTP/2-
based multiplexing can be used to simultaneously fetch mul-
tiple qualities of video segments (denoted retransmissions) in
order to close such gaps and thereby, improve the Quality-
of-Experience (QoE) of a client. In this work, we analyze
how traffic engineering approaches can also be used to provide
improved QoE by retransmitting segments using a faster path,
when available.

The second example we consider focuses on more recently
evolved 360 streaming applications for VR/AR that are quickly
gaining traction as popular video streaming applications. Such
high-bandwidth, latency sensitive applications continue to
push the boundaries of current network architectures and drive
innovation in traffic engineering approaches. Fig. 2 shows
an example of tile-based 360 streaming where each scene
is split into tiles that are rendered as the user moves their
head. As is evident from this figure, such an application would
require multiple tiles to be downloaded concurrently in order
to render a ”Viewport” for the user. Furthermore, each of these
tiles may need to be retransmitted in higher qualities if they
experience quality gaps as shown in Fig. 1. In order to provide
an evaluation of simultaneous tile downloads, in this work we
will also analyze the benefits of transmitting multiple streams
over a fast path, when available.

In previous work [9], we demonstrated a prototype where
HTTP/2 header information can be translated as a QoS
requirement using P4-capable network elements to convert
application layer header information into a Q-in-Q tag for
differentiated routing via the core network using the Bring-
Your-Own-Controller (BYOC) feature [10] provided by the
Chameleon testbed [11]. In this work, we conduct extensive
evaluations in order to analyze the QoE improvement for ABR
streaming applications. We also use traces from an actual
large-scale CDN to conduct an analysis of real-world ABR
sessions to show that P4-based ABR segment retransmissions
can be used to maximize the QoE for all sessions in the trace.

III. DESIGN

In this section, we introduce the design of our approach
by first describing application header-based traffic engineering
followed by an explanation of the system architecture. Al-
though from a designer’s perspective it may seem attractive to
perform application header-based traffic engineering through-
out the network, we believe that from a network management
and scalability vantage point, such type of traffic engineering
is most suitable for the network edge. In the following, we de-
scribe the design of our system where application header-based
traffic engineering at the edge can be seamlessly integrated
with existing traffic forwarding contexts in core networks.

A. Application header-based Traffic Engineering

Ethernet II Frame
(untagged)

Destination
MAC

(6 bytes)

Source
MAC

(6 bytes)

EtherType
(2 bytes)

Payload

Destination
MAC

(6 bytes)

Source
MAC

(6 bytes)

EtherType
(2 bytes)

Payload

Destination
MAC

(6 bytes)

Source
MAC

(6 bytes)

EtherType
(2 bytes)

Payload

802.1Q Header
(4 bytes)

TPID
0x8100

VLAN
Priority

CFI VLAN
ID

VLAN
tagged
(802.1Q)

Q-in-Q VLAN
tagged
 (802.1ad)

TPID
0x8100

VLAN
Priority

CFI VLAN ID

802.1Q Header
(4 bytes)TPID

0x8100
VLAN
Priority

CFI VLAN ID

802.1Q Header
(4 bytes)

C-TAG

S-TAG

Fig. 3: VLAN tag header insertion in Layer-2. 802.1Q is fol-
lowed by 802.1ad in order to differentiate between customers
on the same VLAN.

1) Q-in-Q: The IEEE 802.1ad standard [7] double-tagging
is introduced to allow network service providers to separate
traffic from different VLANs as well as customers for better
traffic management. Here, we use Q-in-Q tunneling, illustrated
in Fig. 3, to translate application-layer header information into
link-layer headers at the edge before packets are forwarded
to the core network. In particular, we focus on HTTP/2
application headers since they explicitly provide header fields
that can be easily interpreted into Q-in-Q tags for better
manageability.

Fig. 4: HTTP/2 Header Format: Common Eight-Byte Header

2) HTTP/2 Header: As the number of objects embedded
within a web page began to increase, the overhead due to
variable length headers resulted in increased page load times
for HTTP/1.1. Contrarily, HTTP/2 introduces a fixed length
header and performs header compression in order to reduce
perceived latency and increase goodput [12]. It is interesting
to note that HTTP/2 explicitly defines the Stream ID field
(see Fig. 4) to multiplex several streams into a single TCP
connection and thus, can be re-interpreted as a Q-in-Q tag

Control Monitoring

EDGE

EDGE CORE

EDGE

ORCHESTRATION
AND

VISUALIZATION

SOUTHBOUND

NORTHBOUND

Data Plane

Control Plane

Stats
Reply

Stats
Request

Install
Flow

Request
Connection

Send Network
Information

Request Network
Information

Content
Server

Switch

Control Monitoring

Cellular

Home

Fig. 5: Architecture for QoE to QoS translation at the edge,
which is envisioned as SD-WANs

by any link-layer device. In this work, we redefine the outer
customer tag (C-TAG) as a Stream ID tag using a flexible,
protocol-independent packet processing language, P4 that can
be programmed to interpret HTTP/2 headers. For the ABR
video streaming application, Stream ID is used to differentiate
between two distinct bitrate qualities that are simultaneously
downloaded by the client as described in our previous work
[8].

B. System Architecture

The main focus of our architecture is to translate
application-layer header information into link-layer headers.
We additionally include a centralized component that allows
network providers to orchestrate and visualize their network
from a single interface. Figure 5 presents the architecture of
our system and consists of the following components:

1) The Core: For our architecture we assume a capability
similar to that of a large-scale research testbed, ESNET1,
where the core or backbone network includes a programmable
data-plane that performs fine-grained traffic engineering based
on L2-L5 header information and is centrally controlled by
an independent controller (denoted as Monitoring and Control
in Fig. 5). However, we note that similar functionality can
be incrementally deployed in production networks based on
MPLS Traffic Engineering (MPLS-TE)2 techniques as well.

2) The Edge: Innovation at the edge such as SD-WANs
[2] is driven by the tremendous growth in downstream ap-
plication traffic and the advent of cloud computing. Here,
the edge network also includes a programmable data-plane
of several flexible switches that are centrally controlled by an
independent controller. However, these switches can perform
fine-grained traffic engineering using L5 header information as
well. In order to peer with the core, the edge controller must
translate information in L5 headers to L2-L4 headers before
sending packets out into the core.

1https://www.es.net/network-r-and-d/experimental-network-testbeds/
100g-sdn-testbed/

2https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/
multiprotocol-label-switching-traffic-engineering/

3) Orchestration and Visualization: Our system also in-
cludes a centralized component that aggregates monitoring
information from the various controllers in order to provide
a visual representation of network performance.

The diagram also shows clients that connect to the edge
via wireless home networks and cellular networks and receive
requested content from a server connected to a different edge.
The two edge networks are connected by the core. In the
following section, we describe the setup for our experiments
including the platform and tools we use to run QoE translation
experiments.

IV. SETUP

A. Chameleon Testbed

The Chameleon testbed is a deeply reconfigurable testbed
that is suitable for large-scale prototyping of distributed sys-
tems and software defined networks. In this work, we leverage
the recently released Bring-Your-Own-Controller feature [10]
along with previously existing capabilities of the Chameleon
Cloud to create a prototype of our architecture. Figure 6 shows
the setup of our testbed, which is described next in more detail.

1) HTTP/2 application: For the HTTP/2 application we
instantiate two bare-metal nodes: one that runs a Web server
using the open source Caddy (version=0.10.10) software and
another that runs an ABR video streaming client, AStream3,
that we modify to use an open-source Python-based library,
hyper4, that downloads video content using HTTP/2.

2) P4 Switch[5]: We install the behavioral model, BMV25,
software switch in a bare-metal node, which emulates a
P4-capable switch, and then use the P4Runtime6 tool to
programmatically install rules into each switch. In the future,
we plan to replace this component with a hardware ASIC P4
switch [13] that has only recently become available.

3) OpenFlow Switch: OpenFlow [14], a widely-used imple-
mentation of SDN, is available to experimenters as a Virtual
Forwarding Context (VFC), a functionality provided by Corsa
switches, which enables each user to provision a nearly-
isolated instance of an OpenFlow (v1.3) switch. A single Corsa
DP2000 switch deployed within the Chameleon testbed at each
site provides experimenters with performance measurements
for a virtual instance of a hardware switch comparable to
those used in production networks today. Each VFC can be
programmed to connect to an individual SDN controller such
that each user’s experiment is truly isolated from others. After
HTTP/2 headers are translated into Q-in-Q tags as described
in Sect. III-A2, application packets are forwarded through the
Corsa switch into the core network.

4) Core Network: In this setup, we provision two VLAN
circuits (denoted as Circuit1 and Circuit2) between the Uni-
versity of Chicago (UC) and the Texas Advanced Computing
Center (TACC) using the Advanced Layer-2 Service (AL2S)

3https://github.com/pari685/AStream
4https://github.com/Lukasa/hyper
5https://github.com/p4lang/behavioral-model
6https://github.com/p4lang/PI

FAST PATH

CHAMELEON
TESTBED SETUP

CLIENT SERVER

CROSS
TRAFFIC

CROSS
TRAFFIC

P4 Switch

OpenFlow1.3
Switch

CIRCUIT1

CIRCUIT2

SDN Controller
(RYU)

CENTRALIZED NETWORK
MANAGEMENT AND
CONTROL

DISTRIBUTION
NETWORK

Chamelon@UC Chamelon@TACC

Fig. 6: Chameleon Testbed Setup: A HTTP/2 based video streaming client uses two disjoint paths to request multiple qualities
of the same segment. Note: The disjoint points provide us with a setup to run controlled measurements with differential QoS
features and study their effects on ABR retransmissions.

implemented by Internet2, which is a network service provider
for collaborative research7. Note that the cross traffic nodes
are bare-metal machines used to limit network bandwidth to
1Gbps using Iperf38 on Circuit1.

5) Centralized Management and Control: For orchestration
and visualization, we use Jupyter Notebooks [15], an open-
source web tool particularly suited for reproducible exper-
iments. For this evaluation, Jupyter runs inside Chameleon
and provides us with a single interface not only to run the
controller and the ABR video streaming application but also
to visualize network traffic and QoE metrics.

V. EVALUATION

A. Download Time and Throughput

Figure 7 illustrates the performance improvement for ABR
segment download time and throughput with the use of
P4-based traffic engineering. In order to provide statistical
significance to our evaluations, each experiment is repeated
ten times and average and standard deviations are presented.
Circuit1 and Circuit2 are 10Gbps isolated paths provisioned
by AL2S between Chicago and Austin with an inherent delay
of 30ms and a loss of 0%. Here, we consider a Baseline case,
where all ABR segment are transmitted on the same path
versus the case where retransmitted segments are sent over
a prioritized path (denoted FAST PATH in Fig. 6). In order to
observe the benefits of using a FAST PATH for application
data transfer, all experiments described in this section are
conducted by increasing loss and delay on Circuit1, unless
stated otherwise. In order to make our analysis more generally
applicable, we first describe performance improvements for
segment download time and application throughput, which are
subsequently translated to QoE metrics for ABR streaming
towards the end of this section.

1) Single HTTP/2 Streams: Fig. 7a presents experiments
where a single stream is provisioned on each path, i.e., orig-
inal segments are downloaded on Circuit1 and retransmitted
segments are downloaded on Circuit2. The download time and
application throughput for simultaneous segment downloads
is compared against a Baseline case where both original and
retransmitted segments are downloaded on Circuit1. Here, we

7https://www.internet2.edu/products-services/advanced-networking/
layer-2-services/#features-al2s

8https://iperf.fr/iperf-download.php

evaluate five different network conditions of increasing delay
(denoted D) and loss (denoted L) on Circuit1 in order to study
the benefit of using the FAST PATH for a single retransmission
stream. While it is obvious that no improvement is observed
in the case where D=0 with no added delay on both circuits,
significant improvements for download time and throughput
are observed under different network conditions. We note
that relatively higher performance improvements are observed
when compared with high delay networks and we attribute
this to the following: The application we show here uses TCP
which is impacted by its slow start behavior and therefore, high
round-trip times drastically impact the average throughput,
especially for downloads of a short duration.

2) Multiple HTTP/2 Streams: While the above experiment
shows L5 header-based traffic engineering is feasible and
beneficial for ABR streaming sessions where a maximum
of two streams are downloaded simultaneously, emerging
applications such as 360 VR/AR streaming generally consist
of multiple concurrent streams per session as illustrated in Fig.
2. Thus, Fig. 7b extends the evaluation of our system to in-
clude performance improvements when multiple segments are
downloaded simultaneously. Since considerable improvement
is observed in the case where Circuit1 is characterized by a
delay of 50ms and average loss of 0.5%, we focus on this
scenario for evaluating cases where the number of streams
is systematically increased. We note that while benefits are
highest when a single stream is transmitted on each path,
throughput is improved by about 30% and segment download
time by more than 20% in cases when the number of streams
per path are increased to two, four and eight, respectively.
In order to further understand the scalability of the system,
the next set of experiments focusses solely on the processing
overhead observed at the P4 software switch when the number
of streams is systematically increased.

3) Processing Overhead - BMV2: Fig. 8 shows the per-
centage of processing overhead for the software switch in
comparison to the case where a single stream is downloaded on
each path. As the number of streams exponentially increases
per path, we observe that the duration of segment download is
correspondingly higher. We note that since these experiments
are conducted with zero added delay and loss on each path
and the software switch runs within a standalone bare-metal
machine, any differences observed can be attributed to the

D=0ms L=0.5% L=1% D=50ms D=50ms
L=0.5%

D=50ms
L=1%

0

20

40

60

80

100

P
e
rf

o
rm

a
n
ce

 I
m

p
ro

v
e
m

e
n
t

[%
]

Download Time
Throughput

(a) Original and retransmitted segment streams are
downloaded on separate paths.

D=50ms,L=0.5%
Streams=1

D=50ms,L=0.5%
Streams=2

D=50ms,L=0.5%
Streams=4

D=50ms,L=0.5%
Streams=8

0

20

40

60

80

100

P
e
rf

o
rm

a
n
ce

 I
m

p
ro

v
e
m

e
n
t

[%
]

Download Time
Throughput

(b) Several streams are downloaded
simultaneously where the number of streams is
symmetrically distributed between two paths.

Fig. 7: Performance improvements for file transfer time and application throughput under varying network conditions.
Comparisons with a baseline case where all streams are downloaded on a single path, i.e., Circuit1 show significant benefits
when a second, faster path is used for downloading retransmitted segments.

CPU processing time on the software switch.

Streams=2 Streams=4 Streams=8
0

100

200

300

400

500

600

700

800

P
ro

ce
ss

in
g
 T

im
e
 O

v
e
rh

e
a
d
 [

%
]

Download Time

Fig. 8: Processing time overhead for the P4 software switch
with simultaneous HTTP/2 streams shows that performance is
CPU-bound.

B. QoE metrics for ABR Streaming

For the evaluation of the performance impact of the traffic
engineering approach we present in this paper on ABR stream-
ing, we make use of the following metrics, which are widely
used in related work:

Average Quality Bitrate (AQB): One of the objectives
of quality adaptation algorithms is to maximize the average
quality bitrate of streamed video. Note that an increased appli-
cation throughput contributes to an improvement in the average
quality bitrate for ABR video streaming. For a comprehensive
QoE representation, we need to combine this metric with the
Number of Quality Switches which is explained below.
Number of Quality Switches (#QS): This metric is used
together with AQB to draw quantitative conclusions about
the perceived quality (QoE). For example, for two streaming
sessions having the same AQB, the session with the lower
#QS will be perceived better by the viewer [16]. A reduction

in the number of quality gaps due to retransmissions results in
a corresponding reduction in the number of quality switches
for an ABR streaming session.

C. Trace-based simulation

In this section, we analyze actual sessions from a popu-
lar CDN (Akamai) [17] in order to obtain an estimate of
QoE improvements when differentiated traffic engineering
is performed for original and retransmitted segments. This
dataset contains video streaming session information for a 3-
day period in June 2014. The ABR streaming traffic in this
trace contains 5 million video sessions originating from over
200,000 unique clients who were served by 1294 edge servers
around the world. For each streaming session, each individual
segment request is logged, which allows us to reconstruct the
quality of the segments received at the client.

Fig. 9a shows the average number of retransmissions per
session that need to be made in order to close quality gaps as
illustrated in Fig. 1. We note that about 36.19% of sessions
require at least one retransmission while some sessions may
even require up to 300 retransmissions [8].

Fig. 9b illustrates the percentage improvement in average
quality bitrate required in order to maximize QoE for each
session. For example, 20% of the video streaming sessions in
this dataset only need a 10% improvement in average quality
bitrate in order to maximize their QoE. When we combine this
with the results obtained in Fig. 7a, assuming that a similar
quality profile is observed in our testbed network, we note that
nearly all sessions can maximize their QoE by using a high
priority path for retransmitting segments in a higher quality.
These benefits are especially significant when the default path
suffers from large round-trip times as high as 50ms. Further,
the number of quality changes, #QS, are minimized by
performing retransmissions using the FAST PATH whenever
necessary, since this is a natural by-product of closing gaps.

0 50 100 150 200 250 300
Number of segment retransmissions

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

All Sessions

(a)

0 10 20 30 40 50
Improvement in

 Average Quality Bitrate [%]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

All Sessions

(b)

Fig. 9: Analysis from a real-world trace show projected QoE improvements with the use of ABR segment retransmissions.

Although we present relative improvements to QoE with the
use of P4 software switches to perform application header-
based traffic engineering, it is important to note that their
performance is CPU-bound and not I/O bound. It is, there-
fore, recommended to consider software switches only for
prototyping systems and implement hardware switches such
as Barefoot’s Tofino [13] in production networks.

VI. CONCLUSION

In this work, we show how flexible switches at the edge can
be used to translate application layer header information into
link layer headers to differentially route distinct qualities of
ABR video segments in order to improve the average quality
bitrate of a HTTP/2-based video streaming application. We
performed evaluations in a geographically distributed testbed,
Chameleon, using open source orchestration and visualization
tools. Our results show that application header-based traffic
engineering techniques can vastly improve users’ QoE. In
order to conduct large-scale performance evaluations of QoE
improvements for P4-based traffic engineering approaches, our
future work will focus on using hardware switches that process
L5 headers at line-rate speeds.

VII. ACKNOWLEDGMENTS

Results presented in this paper were obtained using the
Chameleon testbed supported by the National Science Founda-
tion. This material is based upon work supported by the U.S.
Department of Energy, Office of Science, under contract num-
ber DE-AC02-06CH11357 and the DyNamo grant awarded
by the National Science Foundation, Office of Advanced
Cyberinfrastructure under contract number #1826997.

REFERENCES

[1] R. P. Mike Belshe and M. Thomson, “Hypertext Transfer Protocol
Version 2 (HTTP/2),” Internet Requests for Comments, RFC Editor, RFC
7540, May 2015. [Online]. Available: https://tools.ietf.org/rfc/rfc7540.txt

[2] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus,
M. Hines, T. Kim, A. Narayanan, A. Jain, V. Lin, C. Rice, B. Rogan,
A. Singh, B. Tanaka, M. Verma, P. Sood, M. Tariq, M. Tierney,
D. Trumic, V. Valancius, C. Ying, M. Kallahalla, B. Koley, and
A. Vahdat, “Taking the edge off with espresso: Scale, reliability and
programmability for global internet peering,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’17. New York, NY, USA: ACM, 2017, pp. 432–445.
[Online]. Available: http://doi.acm.org/10.1145/3098822.3098854

[3] Cisco, “The zettabyte era: Trends and analysis,”
2017. [Online]. Available: https://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index-vni/
vni-hyperconnectivity-wp.pdf

[4] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi, “The quic transport protocol:
Design and internet-scale deployment,” in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, ser.
SIGCOMM ’17. New York, NY, USA: ACM, 2017, pp. 183–196.
[Online]. Available: http://doi.acm.org/10.1145/3098822.3098842

[5] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014. [Online].
Available: http://doi.acm.org/10.1145/2656877.2656890

[6] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“Netcache: Balancing key-value stores with fast in-network caching,” in
Proceedings of the 26th Symposium on Operating Systems Principles.
ACM, 2017, pp. 121–136.

[7] Provider Bridges, IEEE Std. 802.1ad, 2006.
[8] D. Bhat, R. Deshmukh, and M. Zink, “Improving qoe of abr streaming

sessions through quic retransmissions,” in Proceedings of the 26th
ACM International Conference on Multimedia, ser. MM ’18. New
York, NY, USA: ACM, 2018, pp. 1616–1624. [Online]. Available:
http://doi.acm.org/10.1145/3240508.3240664

[9] D. Bhat, J. Anderson, P. Ruth, M. Zink, and K. Keahey, “Application-
based qos support with p4 and openflow: A demonstration using
chameleon,” Semantic Scholar, 2018.

[10] P. Ruth, “Software-defined networking with chameleon,” 2018.
[Online]. Available: https://chameleoncloud.readthedocs.io/en/latest/
technical/networks/networks sdn.html

[11] K. Keahey, P. Riteau, D. Stanzione, T. Cockerill, J. Mambretti, P. Rad,
and P. Ruth, “Chameleon: a scalable production testbed for computer
science research,” in Contemporary High Performance Computing vol.
3. Ed. Jeff Vetter., 2017.

[12] I. Grigorik and Surma, “Introduction to http/2,” 2019.
[Online]. Available: https://developers.google.com/web/fundamentals/
performance/http2/

[13] Barefoot, “Tofino: World’s fastest p4-programmable ethernet switch
asics,” 2019. [Online]. Available: https://www.barefootnetworks.com/
products/brief-tofino/

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innova-
tion in Campus Networks,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 2, Mar. 2008.

[15] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay et al.,
“Jupyter notebooks-a publishing format for reproducible computational
workflows.” in ELPUB, 2016, pp. 87–90.

[16] M. Zink, J. Schmitt, and R. Steinmetz, “Layer-encoded video in scalable
adaptive streaming,” IEEE Transactions on Multimedia, vol. 7, no. 1, pp.
75–84, Feb 2005.

[17] D. K. Krishnappa, M. Zink, and R. K. Sitaraman, “Optimizing the video
transcoding workflow in content delivery networks,” in Proceedings
of the 6th ACM Multimedia Systems Conference, ser. MMSys ’15.
New York, NY, USA: ACM, 2015, pp. 37–48. [Online]. Available:

http://doi.acm.org/10.1145/2713168.2713175
[18] D. Bhat, “Application header-based p4 support in chameleon.” 2019.

[Online]. Available: https://github.com/dbhat/lcndemo2018/tree/master/
reproducibility artifacts

APPENDIX A
DEMO: APPLICATION-BASED QOE SUPPORT WITH P4 AND

OPENFLOW

A. Abstract

This system has been tested and evaluated in Chameleon
[11], a deeply reconfigurable testbed that is suitable for large-
scale prototyping of distributed systems and software defined
networks. In order to experiment with Chameleon, you will
need an account for access which is available free to the
research community. We will use the testbed setup described in
Fig. 6 to systematically compare QoE metrics such as average
quality bitrate for two traffic engineering approaches: one
where ABR video streaming retransmissions are differentially
routed using a flexible switch and another where retrans-
missions are classified as regular HTTP traffic without any
preferential treatment. Since all of the experiment components
are located in a public cloud, for this demonstration we will
require a large monitor with a HDMI connector to allow
conference attendees to view as well as use the Jupyter web
instance to interact with our experiment and two power outlets.
The following subsystems are included (More details and
source code can be found in [18]:

B. Chameleon Testbed

In this work, we leverage the recently released Bring-
Your-Own-Controller feature along with previously existing
capabilities of the Chameleon Cloud to create a prototype
of our architecture. In order to reserve resources within the
Chameleon testbed you will first need to create an account,
following which an XML description file (also known as a
Heat template) must be used for resource specification. Figure
6 shows the setup of our testbed, which we describe in detail.

1) HTTP/2 application: For the HTTP/2 application we
instantiate two bare-metal nodes: one that emulates a Web
server using the open source Caddy (version=0.10.10) soft-
ware and another that emulates an ABR video streaming client,
AStream1, that we modify to use an open-source Python-
based library, hyper2, that downloads video content using
HTTP/2.

2) Cross Traffic: The cross traffic nodes are bare-metal
machines used to create various network congestion scenarios
using Iperf33 for controlled experiments. For these experi-
ments, we use UDP traffic to create a constant bit-rate traffic
in order to emulate a congested network path.

iperf3 -c <server_ip> -t 20 -i 5
-b 900Mbps -u -t 500

3) P4 Switch [5]: We install the behavioral model, BMV24,
software switch components in a bare-metal node, which
emulates a P4-capable switch, and then use the P4Runtime5

tool to programmatically install rules into each switch. Note
that we use two different implementations of the P4 switch;
one for the Baseline case where all streams are routed on a
single network path (available as basic single.p4 in [18]) and
another for the test case where half of the streams are split

equally between Circuit1 and Circuit2 (available as basic.p4
in [18]).

4) Network Emulations: In order to emulate varying loss
and delay on Circuit1, we make use of tc6 to create a traffic
class and NetEm7 in order to define network conditions for the
traffic class. An example command which is used to induce a
round-trip delay of 50ms and a loss of 0.5% is as follows:

sudo tc qdisc add dev <interface_name>
root netem delay 25ms loss 0.5%

5) OpenFlow Switch: OpenFlow [14], a widely-used imple-
mentation of SDN, is available to experimenters as a Virtual
Forwarding Context (VFC), a functionality provided by Corsa
switches, which enables each testbed user to provision a
nearly-isolated instance of an OpenFlow (v1.3) switch. After
HTTP/2 headers are translated into Q-in-Q tags as described
in Sect. III-A2, the application packets are forwarded through
the Corsa switch into the core network.

6) Core Network: In this demonstration, we provision two
VLAN circuits (denoted as Circuit1 and Circuit2) between
University of Chicago (UC) and Texas Advanced Computing
Center (TACC) using the Advanced Layer-2 Service (AL2S)
implemented by Internet2, which is a network service provider
for collaborative research8.

7) Centralized Management and Control: For orchestration
and visualization, we use Jupyter Notebooks [15], an open-
source web tool particularly suited for reproducible experi-
ments. For this demonstration, Jupyter runs inside Chameleon
and provides us with a single interface not only to run the
controller and the ABR video streaming application but also
to visualize network traffic and QoE metrics. Our OpenFlow
controller is implemented using the Python-based RYU9 ap-
plication, where we sepcify forwarding contexts that include
VLAN tag identifiers for flow rule specification.

Fig. 10: JupyterLab: Web GUI for orchestration and live
visualization of experiments on Chameleon

1https://github.com/pari685/AStream
2https://github.com/Lukasa/hyper
3https://iperf.fr/iperf-download.php
4https://github.com/p4lang/behavioral-model
5https://github.com/p4lang/PI
6https://linux.die.net/man/8/tc
7http://man7.org/linux/man-pages/man8/tc-netem.8.html
8https://www.internet2.edu/products-services/advanced-networking/layer-2-

services/#features-al2s
9https://osrg.github.io/ryu/

