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ABSTRACT
Technological advancements have led to an increase in teaching
the fundamentals of cloud computing, robotics and autonomous
systems and their importance, relying on strong hands-on practical
experimentation. TheNational Science Foundation (NSF)-supported
testbeds have opened the doors for experimentation and support in
the next era of computing platforms and large-scale cloud research.
In this paper, we present an educational module that conveys acces-
sibility to education, aiming to prepare learners for technological
career paths with the motivation to bring hands-on sessions, and on
the idea of building a freely available set of artifacts that can serve
the educational community. Specifically, we present AutoLearn:
Learning in the Edge to Cloud Continuum, an educational mod-
ule that integrates a collection of artifacts, based on a small scale
open-source self-driving platform that leverages the Chameleon
Cloud testbed to teach cloud computing concepts, edge devices
technology, and artificial intelligence driven applications.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.
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1 INTRODUCTION
We live in exciting times: rapid advances in Machine Learning (ML),
robotics, the Internet of Things (IoT), and automation herald the
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Fourth Industrial Revolution (I4.0) [5]. These changes create sig-
nificant opportunities in our society, but they also transform it,
resulting in a rapidly developing need for skills in new areas of
technology and the consequent shift in the job market [1, 19]. Aca-
demic institutions responded to this need by introducing courses
in robotics, autonomous systems, ML, cloud computing, and data
science [21] – however, these topics can only be taught through
hands-on learning that gives the students a taste of the theory
behind the innovations, a more intuitive feel for the real-world
problems and solutions that make it up. Hands-on learning con-
fronts students with the reality of new technology, demands and
inspires critical thinking, ingenuity in problem solving, and hones
the ability to adapt to fluid technological landscape. However, a
precondition for such technology exploration is having access to
not only high-end resources but also to digital curricula that can
support such experiential exploration and can also rapidly adapt to
technology changes.

In recent years, the National Science Foundation (NSF) has es-
tablished multiple experimental platforms for computer science
research. Testbeds such as Chameleon [17], CloudLab [10], FAB-
RIC [3], and the PAWR testbeds [4, 6, 20, 22, 25] collectively provide
capabilities where any topic in computer science can be experi-
mented with – or taught. This creates a powerful opportunity that
both amortizes the costs of procurement, and democratizes access
to innovative and often expensive resources. It is also a capability
that can potentially disrupt the space of digital artifact sharing –
since digital artifacts typically require some form of computational
capability to interpret, and that in turn relies on access to infras-
tructure that can provide it. Computer science education is one of
the areas that could benefit the most from this development, as
much of the computer science learning, especially in the area of
systems, requires experiential learning. However, while there are
well-established ways of sharing traditional course curricula that
adapt knowledge for the purposes of learning e.g., in the form of
textbooks or exercise books, the momentum behind sharing digi-
tal artifacts is only just developing, giving rise to questions such
as: What do digital educational artifacts comprise? How should
they be shared? What are the digital learning use cases (classes,
self-learning, etc.) How should they be supported by infrastruc-
ture or infrastructure-related services? How can digital artifacts be
sustained?

This paper presents AutoLearn: Learning in the Edge to Cloud
Continuum, an educational module that integrates a collection of
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educational artifacts, based on DonkeyCar, an open-source self driv-
ing platform for small scale cars [24] that leverages the Chameleon
testbed to teach topics relating to autonomous driving ranging
through engineering, data collection, interactions in edge to cloud
continuum, various types of ML, to digital twin models. The arti-
facts offer several digital learning pathways and allow educators
to tailor the content to different learning objectives; for example,
by emphasizing engineering aspects by focusing on modifications
to the self-driving cars or tracks, or shifting emphasis to ML by
using simulators for car driving and focusing on model training
and validation instead. We describe how the artifacts leverage vari-
ous features of the Chameleon testbed, as well as the Trovi digital
artifact hub [14]. Lastly, we offer thoughts on how digital artifacts
can rely on community support by borrowing a model from open
source development practices.

2 EXPERIMENTAL PLATFORMS FOR
EDUCATION

Enabling the academic research community with novel cloud ar-
chitectures such as “bare-metal access”, and improving access to
experimentation is one of the main goals of experimental plat-
forms or testbeds that are supported by the NSF. These testbeds
represent an unique infrastructure, fundamentally important to
advance and support experimentation. Efforts in [13] developed
educational modules for topics in networking, security and cloud
computing demonstrating how instructors and students can benefit
from these topics and especially with the experimentation in real-
world testbeds. Hands-on experiments based on modules that are
openly available and that can be used by institutions to enhance
their educational curricula. The Fair Use Building And Research
Labs (FUBAR) supports and maintains FOOCars, a low cost racing
autonomous vehicles project [2]. Authors highlight the importance
of these testbeds to test assumptions and learn not only about top-
ics related to cloud computing but also training on ML, sensors,
micro-controllers or edge devices. The team created a use-case with
an autonomous remote controller car platform with the main goal
to provide students with the experience of transitioning from the
physical world to remote devices experimentation. Authors also
claim how this project can benefit students, teachers or researchers
in new fields, including testing models for autonomous driving.

Trying to minimize the gap between the transition on building
use-cases that can span from controlling a device remotely or host-
ing new development on local physical devices is also necessary
for this learning process. Chameleon Cloud [16] has successfully
supported educational projects, and it has structured the learning
experience pipeline in a way to provide students and teachers with
unique features such as Chameleon edge testbed, called CHameleon
Infrastructure (CHI) at Edge (CHI@Edge) [15]. This has allowed the
experimentation with application containerization onboard small
and remote controlled cars. In addition, the orchestration aspect
of resource reservations, availability of images and libraries, and
most importantly getting access to both edge and cloud resources
makes the learning experience undoubtedly easy to interact with.

As a starting point, we built AutoLearn, a first of its kind educa-
tional module that leverages these testbed capabilities and delivers a

set of instructional materials, cloud resources, and ultimately a com-
plete loop pipeline to a holistic learning experience. For building
this educational module, our goal is based on the idea of building
a freely available set of modules that can serve the educational
community and to bring instructional materials across the learn-
ing process. We built our work on the basis of creating not only
educational materials that can teach about cloud computing or net-
working, but to build instruction to offer access to learning topics
such as engineering, robotics or ML. Most notably, we have seen
the higher barrier of entry to these areas of research, and with a
scarcity of well-organized, free and easy to follow educational ma-
terials. Our contributions are built having extensibility, flexibility,
affordability and adaptability in mind. With different options avail-
able in the market, we rely on DonkeyCar, an open source small
self-driving car platform, with a very simple and organized set of
instructions that aims students to take inputs and return outputs in
the pipeline. From data collection to training models to ultimately
evaluating the learning experience, we consider this platform not
only for its minimalism, but also for its modularity. Our approach
is built on top of the Chameleon testbed, aiming to provide free
and accessible education for individuals of all backgrounds and
skill-levels to devise education initiatives, benefiting society by
spreading knowledge and lowering barriers to entry.

3 A SHAREABLE DIGITAL EDUCATIONAL
ARTIFACT

3.1 Autonomous Car Module
Our autonomous cars educational module has been designed to
build on the existing efforts described in the previous section and
adapt them to take advantage of resource availability provided by
open research and educational platforms, specifically the Chameleon
testbed and CHI@Edge, thus putting this type of learning within
reach of many students, either as part of directed or self study. We
supplement these platforms by making specific recommendations
for purchase of inexpensive ∼($200) and generally available cars
kits and accessories that minimize the configuration time for this
type of course [23]. Similar to the existing approaches, the learn-
ing outcomes for this module span the following: familiarity with
assembling hardware, basic familiarity with systems topics (basic
knowledge of UNIX, understanding how to configure hardware and
software, etc.), basic familiarity with cloud and edge computing,
basics of computer simulation, and ML topics spanning data col-
lection and cleaning, training a ML model, and finally actuating
a successful ML model with an autonomous car. The following
section describes the pre-conditions for setting up the module, the
expected time investment on the part of instructors and students,
and additional resources and capabilities available by leveraging
the Chameleon testbed.

3.2 Cloud and Edge Hardware Requirements
Our educational module is built on top of the Chameleon plat-
form, and in particular the CHI@Edge segment of Chameleon to
manage the autonomous cars and integrate them with the testbed.
Chameleon is an NSF-funded testbed that supports computer sci-
ence research and education; to gain access all educational users
need to do is request a project in computer science education. The
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testbed contains a large collection of diverse hardware resources
over several sites. In particular, it has a large investment in accel-
erators ranging from 40 nodes with a single Nvidia RTX6000 GPU
for general use, to sets of 4 nodes each with 4x Nvidia V100, P100,
or A100 Datacenter GPUs and InfiniBand interconnects to scale
larger experiments, for example HPC or ML training workloads.
Smaller numbers of nodes with other architectures (Nvidia M40,
K80, AMD MI100) round out a variety of choices. All hardware
is available either on-demand or via advance reservations so that
users can reserve required resources ahead of time, for example, to
manage resource scarcity or to guarantee resource availability at a
specific time slot for a class or a demonstration. The hardware is
re-configurable on bare metal level to support research on topics
such as power management or provide a controlled environment for
performance measurement. Further, the two principal Chameleon
sites are connected to the FABRIC networking testbed creating
potential to support cloud experiments with managed latency.

Once part of a Chameleon project, users can log into the testbed
with their institutional credentials via federated identity login and
then interact with it via a GUI, or programmatically via the com-
mand line and python interfaces. To support experiment develop-
ment and sharing, Chameleon integrates the programmatic inter-
faces with Jupyter so that users can package their experiments more
easily and combine experimental environment creation, experiment
body, and analysis in one set of notebooks. To make sharing such
experiments viable, the system also provides Trovi [14], an exper-
iment hub integrated with the testbed (and other testbeds in the
future via open APIs) so that users can not only find experimental
artifacts, but interact with them easily.

Since it first came online in mid-2015, Chameleon has served
8,000+ users, working on 1,000+ projects, whose scientific output
resulted in 600+ publications. In addition to providing access to re-
sources in the datacenter, Chameleon also supports the Bring Your
Own Device (BYOD) paradigm that allows users to add their own
devices to the testbed for limited sharing. In this paradigm, users
can add devices to the testbed by downloading a CHI@Edge com-
mand line utility and SD card image; the utility registers the device
with the testbed, and configures the SD card image to be flashed
onto the device. Once booted up, the image contains a daemon
that connects the device to the testbed and configures whitelist-
based access policies for the added device. From there on, the added
device can be allocated via the standard Chameleon methods, i.e.,
federated identity login, resource discovery, and advance reserva-
tions – though it is reconfigured by deploying a Docker container
rather than bare-metal reconfiguration. In particular, users can man-
age the device through our Jupyter interface and within the same
Chameleon session as the data center resources. This allows users
to create and manage complex resource topologies and interactions
in the edge to cloud continuum from one Jupyter notebook.

3.3 The Educational Module: Structure
The structure of the educational module is designed to give students,
self-learners and teachers the necessary guidance andwalk-through
in an easy to follow set of instructions. The structure is divided into
three main sub-components with artifacts, computational compo-
nents and ultimately extensions and assignments as can be observed

in Fig. 1, which can be used to reinforce, apply, and assess the new
learned skills. Below, we describe the composition and function of
each component.
Collecting and cleaning data:
Collecting data from manual driving sessions is the first step stu-
dents need to get through in the AutoLearn training module. Fig. 2
illustrates three different data collection paths. Sample datasets,
and data collected through the Unity game platform via simulation,
and through the real physical car. For those students who have
access to the physical car, the most interesting method is to drive
the car around an actual track. Students can drive the car using a
physical joystick controller, or use the DonkeyCar web controller
that provides the same functionality via a web interface and sends
the commands to the car. Both modes provide a variety of options
such as setting the throttle as constant (useful if the car is used in
races with a pilot that will steer but does not control throttle). By
default, all data is stored on the Raspberry Pi /car/data and can be
manually transferred to the cloud using SSH for either storage as
sample dataset or for training (this workflow is part of AutoLearn
instructions, see [11]). Alternatively, students can use the Donk-
eyCar simulator which allows them to do the same – but with a
virtual car in a simulated track environment. The simulator includes
several different tracks to choose from. After the simulator is set
up, all other functionality relating to driving the car and collecting
data is the same. The simulator is not computationally intensive
and can be installed on various OS, including Windows, Linux and
MAC machines, i.e., students’ laptops.
Additional data collection:
Learners will likely generate some bad data consisting of mistakes
(i.e., crashes or images that are off-side) while driving; this data
need to be deleted for the training set to represent a valid scenario.
This step is done manually by using the tubclean utility included
in the DonkeyCar python package, which plays a video of the col-
lected images; users watch the video, select the parts that need to be
deleted, which the program then correlates to invalid data records
that need to be cleaned up.
Sample datasets:
The AutoLearn package also contains sample datasets that students
can use to train models without having to drive the car. The sample
datasets were collected by manually driving the car around a track,
and through the DonkeyCar simulator. We used a default track
that was made with an orange tape oval shape with the following
dimensions; inner line length: 330 in, outer line length: 509 in and
average width: 27.59 in. Students can replicate the default track
following the dimensions and as it can be seen in Fig. 3 (a). Fig. 3 (b)
corresponds to the Waveshare track, which is a commercial track.
Each of the existing datasets contains 10-50K records, records that
consist of .catalog files, images directory, and manifest files. .Cata-
log files consist of steering and throttle values that were recorded
while driving. Each of these corresponds to an image in the images
directory based on their id number. Catalog_manifest files store in-
formation about each catalog file and the manifest.json file is where
certain records are marked for deletion. These sample datasets are
stored in our educational module’s GitBook, and can be accessed
in [11]. This can be seen as a good entry level exercise that gets
students familiar with the car setup; they can be generated either
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Model Training

Model Evaluation Simulator Drive and execute locally in edge device

Trained models(included in AutoLearn)
Collecting and cleaning data Additional data collection

Digital Twin Drive from cloud ReinforcementLearning
Edge computing optimizationfor models  inference Obstacle detection, computer vision classification algorithmsPath following (record a path with GPS)Additional models(create your own model)

3D RNNInferred
MemoryCategoricalLinearSample Keras models(included in DonkeyCar)

LocalizerBehaviorRNN 3DLatentIMUCategorical Linear
Artifacts ComponentSample datasets

Figure 1: AutoLearn offers three main components, artifacts, computation and extension/assignments, within a comprehensive
ML pipeline including data collection, model training and evaluation. Students and instructors can make use of sample datasets
that can be trained with sample Keras models (included in DonkeyCar), collect / clean data and try out models (included in
AutoLearn). Lastly, more advanced students can collect additional data that can aim to create new models for training.

Unity game platform(simulator)Realphysical car Datasets for training Sample Datasets

Figure 2: AutoLearn provides three different data collection
paths. Sample datasets, data collected through the Unity
game platform via simulation, and through the real physi-
cal car. Ultimately, these datasets serve for training the ML
models.

by driving the actual car or via the DonkeyCar virtual driving en-
vironment. Possible variations include modifying the shape of the
track, varying the car configuration and/or driving conditions e.g.,
by changing the surface of the track, or modifying the car itself.
This is a “beginner level” assignment that allows students to easily
experiment with effects of different datasets on different training
models.
Model training:
Once the data is obtained by any of the methods described above,

(a) Default track (b) Waveshare track

Figure 3: Sample datasets can be collected by manually driv-
ing the car around a track, and through the DonkeyCar sim-
ulator. We used a default track that was made with an orange
tape oval shape and a commercial conventional track (Wave-
share).

students can proceed to training models. The AutoLearn module
provides a Jupyter notebook that reserves Chameleon hardware,
deploys Ubuntu 20.04 CUDA image with accelerator support, and
then installs and configures all the required dependencies including
Donkey, Tensorflow, and CUDNN drivers. DonkeyCar provides by
default several Keras models to choose for training a self-driving
model. By default, a learner can start with the Linear model with
an easy to understand pipeline. AutoLearn comes with six tested
models, including linear, memory, 3D, categorical, inferred, and
RNN; other models can be also tried, but they require doing ex-
tra configuration and / or hardware. We tested this process on a
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range of GPU nodes available via Chameleon including A100, V100,
v100NVLINK, RTX6000, and P100. Once the instance is deployed
and configured with all the dependencies, the student copies the
training data using rsync command and can begin the training
process.
Training Additional Models:
This is a good area for further study that additionally lends itself
to competitions between student teams. Extensions and exercises
relating to model training include comparisons between different
models (e.g., we found that the inferred model was best because
it gave the car the ability to speed fast, while still being accurate);
path following (record a path with GPS and have the car follow that
path); obstacle detection; various computer vision classification
algorithms (example: camera identifies color of object placed in
front of it; red means stop, green means go); and edge detection/line
following (camera used to identify the edge of the track or a center
line and keep the car following that). Students might also compete
to train models yielding a combination of fastest speed with fewest
errors, or accuracy following tracks of different shapes.
Model Evaluation:
For this segment, teachers or TAs make the Raspberry Pi devices as-
sociated with the cars (and therefore the cars themselves) available
via the BYOD functionality of CHI@Edge (see Section 2). Students
can thus treat the cars as any other Chameleon resource, download
the trained models onto them for inference, and drive them around
the track measuring qualities of interest (speed, number of errors,
etc.) as suggested in the AutoLearn documentation. As in the case
of data collection, students without access to a physical car, can use
DonkeyCar simulator to perform the evaluation virtually. Exten-
sions and assignments associated with this stage include modules
exploring the edge to cloud interaction by attempting to run infer-
ence models in the cloud, constructing hybrid edge cloud inference
models, or using reinforcement learning. Lastly, combining the sim-
ulator and real-life validation can lead to interesting exploration of
digital twin modeling.

3.4 The Teaching Module
The teaching module is structured to support multiple learning
pathways depending on learning objectives, available equipment,
time, other resources, and learning ability. The overall learning
pathway consists of the rough three phases illustrated in Fig. 1:
data collection, model training, and model evaluation. However,
each of the phases has multiple alternatives that can be used to
customize the student’s learning pathway. For example, instead of
collecting actual data, students can use the datasets provided in
AutoLearn. Further, students can use one of the packed pre-trained
models or explore new models with different training objectives,
or with default pre-trained models that are included in DonkeyCar.
Lastly, they can validate the models running an actual car, or by
using the simulator if the car is not available, or even combine both
to use digital twin exploration. Providing alternatives in each of the
phases is an interesting way to extend the module creating potential
for additional exercises or homework assignments ranging in level
from beginner to advanced. For example, additional data collection
could be a good beginner/warmup exercise while in the validation
phase students can extend the module by exploring in-situ versus

in the cloud inference or experiment with reinforcement learning
providing the opportunity for more advanced assignments. Finally,
a range of interesting projects can be based on developing a digital
twin model based on comparing the simulation output with real-
life model evaluation. Different pathways through this educational
module could also shift the focus of the exploration from engineer-
ing to ML: using available datasets and a simulator does not require
a car, focuses on training and evaluating models, and can be used
as part of a ML course. At the same time, an engineering course
can focus on data collection with different car configurations and
evaluate them using ready-made training modules.

3.5 The Educational Module: Implementation
Chameleon and CHI@Edge support:
The educational module is implemented in CHameleon Infrastruc-
ture (CHI) at Edge (CHI@Edge) to manage the car; Chameleon’s
integration with Jupyter to implement the various instructional
elements in a way that combines explanations in text, with imple-
mentation, and instructional videos and pictures; and the Trovi
experiment hub integrated with GitBook [11] to share the artifact.
The artifact thus consists of a series of Jupyter notebooks that can
be imported/exported to the GitBook to leverage integration with
Chameleon on one side, and contribution and feedback features on
the other.
CHI@Edge and BYOD functionality:
To manage interactions with the car we used CHI@Edge, adding
the car via the BYOD functionality. This allows a student to launch
a container on the car’s Raspberry Pi using a Docker image which
pre-installs all DonkeyCar dependencies simply by executing one
cell in the corresponding Jupyter notebook; this provides a “zero
to ready” configuration pathway with minimum time and effort.
A further advantage of using CHI@Edge is that after launching a
container, there is a built-in console in Jupyter for running com-
mands on the Raspberry Pi. This was helpful though we had to work
around the fact that text editing is not supported in the console at
the present time.
Chameleon’s Basic Jupyter Server Appliance:
To provide a seamless “Jupyter experience” that covers both con-
tainer establishment and the data collection programs that run
inside the container, we used Chameleon’s Basic Jupyter Server
Appliance [7] and included it in AutoLearn Docker image; this
allows students to access the Jupyter Notebook executing on the
Raspberry Pi (and containing all the data collection functionality)
from their own laptops using an SSH tunnel. To implement model
training we used Chameleon’s datacenter resources to reserve a
bare-metal node with a v100 GPU (though other GPU resources
like A100 would work as well as documented in our instructions);
this allowed us to train a model in reasonable amount of time.
Trovi and Chameleon’s artifacts
In addition to using Chameleon’s resources, we were also able to
leverage and augment experiment patterns from artifacts published
on Trovi, and other artifacts [18] using CHI@Edge; this speed up
our development considerably. Similarly, others can extend or mod-
ify our notebooks to implement new training models as part of
extensions or exercises in our educational module. Leveraging the
programmatic interface to the system via Jupyter notebook was
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in general very helpful as it allowed us to streamline often com-
plex configuration of highly programmable resources by combining
them in Jupyter cells that can be executed with one click.
Chameleon’s Object Store:
The collected datasets and the pre-trained models are stored in
Chameleon’s object store [9] and can be combined with other com-
ponents of the system in a “mix and match” pathway.
Educational materials:
The AutoLearn educational materials include documentation sup-
porting different roles and different settings. For directed learning,
we provide documentation for educators including course objec-
tives, explanations of what hardware to buy and alternatives, pro-
posed project extensions, and a one-page TA checklist. To support
students, our GitBook [11] is documented with extensive comments
with instructions and videos on how to set up and drive the car for
data collection and cleaning. Finally, we provide a special documen-
tation pathway for digital self-learners that contains a combination
of teacher’s and student’s documentation modules in a more stream-
lined form as self-learners are likely to play both roles.

4 CONTRIBUTIONS AND FEEDBACK
Our contributions are tangible through an exhaustive digital con-
tent freely available that can be followed in three different pathways,
i.e. regular, classroom, and digital path, based on student’s interests,
background or goals. In addition, Chameleon’s Trovi allows users
to import and export artifacts to / from our GitHub repository as
the best path to support collaborative development and at the same
time offering a link to experimental infrastructure. Understand-
ing how the educational module can be supported as a long-term
project and as a foundational resource for teaching and learning is
also important to us. We provide a set of instructions in our GitBook
artifact, in which learners can start their own educational module.
This can be synced and learners can make additional changes to the
module, make extensions or improvements. Through collaborative
support and learning, students can make a merge request to the
original repository so then the learning community can have access
to different versions and updates of the project. As the educational
module gains contributions and momentum, we are positive that it
can continually improve. In addition, we facilitate a Google Group
[8] and a set of instructions for providing feedback or sharing case
study information about how the educational materials benefited
or what improvements can be made. As we are in the early stage of
developing this educational module, we hope to be very responsive
to any feedback from instructors, students, or any member of the
community.

5 IMPACT OF THE EDUCATIONAL MODULE
One important question is how much impact a learning module
might have; this is particularly important if we are to create in-
centives for module authors and contributors who are likely to be
motivated by the impact. While it is too early to provide a definitive
answer to this question in the context of this particular module, we
suggest a couple of avenues of doing that. One is to rely on quantita-
tive distribution metrics provided by the venue through which the
module is distributed such as number of downloads, views, execu-
tions, review rankings, likes, etc. In our case, those can be obtained

from Trovi [14], which for each artifact lists the number of views as
well as executions (benefit of platform integration), defined as the
execution of at least one cell in the artifact packaging. In addition,
Trovi provides a clear view of the artifact life-cycle management,
where we can keep track of new versions, and apply metadata such
as related tags, description or author lists.

Possible integration with social network-like mechanisms could
in the future provide a more sophisticated feedback by adding a
more fine-grained and verbose comment feedback; in the context of
our packaging this role in our "Contributing Community" and "How
to Provide Feedback modules" [11]. As of this writing, since its pub-
lication in September 2023, the numbers for our artifact in Trovi are
modest: 35 total number of launch button clicks, 9 users who clicked
the launch button, 2 users who executed at least one cell, and it has
been published 8 versions of the artifact. The advantage of these
mechanisms is that the information they provide can be collected
in an automated fashion without placing a reporting burden on
the users of the artifact. The disadvantage is that they represent
an outcome rather than impact: in other words, we can say how
many people used an artifact but not how much they were able to
achieve using it. The latter information is more valuable but harder
to obtain and collecting it usually requires some participation from
targeted student groups.

In our case, we were surprised to find that the two REU students
who participated in the development of the educational artifact,
once they became proficient in it, it took only two weeks each to de-
velop an independent research project that resulted in two posters
accepted to the ACM student competition at SC’23 [12, 26]. Each
of the students followed different avenues of exploration recom-
mended in the various extensions described in Section 3.3 and were
able to focus on the chosen research question immediately. This
suggests that the module represents not only a good preparation
for independent research but also provides a framework on which
research investigations can be built, in effect providing a “shortcut”
to independent exploration.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we focus on the development and design of instruc-
tional materials that can be used in introduction to engineering
classes, robotics, ML, hardware, edge devices and cloud platforms.
Our goal is primarily to serve as a starting point for future educa-
tional modules that can integrate several fields. We aim to offer a
comprehensive source of practical exercises and open materials to
enable learners to understand and apply cloud and edge computing
paradigms into real-world deployments. Our instructional materi-
als are based on DonkeyCar, an open-source self driving platform
for small scale cars that leverages the Chameleon testbed, and that
can serve different learning pathways i.e. regular, classroom, and
digital path. Our educational module brings a lot of potential for
future directions or improvements including further validation. Our
next step is to improve our validation steps with real-classroom
deployment. We are interested in collecting data on how well the
materials are instructed or learned, in addition to cover additional
topics that can aim students to learn more about cutting-edge tech-
nologies and real-world applications or develop ideas on how to
integrate multiple disciplines within these areas. Usability studies
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within different ranges of students, including undergrads, gradu-
ates and self-learners will also add value to enhance AutoLearn.
Ideally, these would take the case of the applicability of AutoLearn
to final projects, ideas for integration with other technologies and /
or testbeds, or the extension of the work for research purposes.

As a clear road map and long-term impact, understanding stu-
dents’ perceptions would definitely add value to the student’s learn-
ing process within our educational module. In addition, since this
area and field is constantly evolving we are also aware of potential
future improvements or adaptations that need to be added to the
educational module. AutoLearn can be extended in other technolo-
gies within these areas including the integration of other intelligent
autonomous vehicles in general such as unmanned aerial vehicles
or drones, in addition to other applications such as precision agri-
culture that can lead to a broader application integration including
sensors or robots.
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