
Application-based QoS support with P4 and
OpenFlow: A demonstration using Chameleon

Divyashri Bhat∗†, Jason Anderson†, Paul Ruth‡, Michael Zink∗ and Kate Keahey§
University of Massachusetts Amherst∗, University of Chicago†, RENCI‡, Argonne National Labs §
∗dbhat,zink@ecs.umass.edu, †jasonanderson@uchicago.edu, ‡pruth@renci.org, §keahey@mcs.anl.gov,

Abstract—Although SD-WANs are now widely deployed by
several production networks, they are largely restricted to traffic
engineering approaches based on layer 4 (L4) of the network
protocol stack that result in improved Quality-of-Service (QoS)
of the network overall without necessarily focussing on a specific
application. However, the emergence of application protocols such
as QUIC and HTTP/2 needs an investigation of layer 5-based
(L5) approaches in order to improve users’ Quality-of-Experience
(QoE). In this demonstration, we leverage the capabilities of
flexible switches that incorporate protocol-independent packet
processing in order to intelligently route traffic based on applica-
tion headers. We use Adaptive Bit Rate (ABR) video streaming as
an example to show how such an approach can not only provide
flexible traffic management but also improve application QoE.
Our prototype consists of an actual deployment in a research
testbed, Chameleon, and a state-of-the-art orchestration and
visualization tool, Jupyter, that we integrate with Chameleon in
order to provide a single vantage point for SDN experimenters.

I. INTRODUCTION

While application protocols such as HTTP have evolved to
provide reduced latency and efficient use of network resources
[1], traffic engineering paradigms such as Software Defined
Networking (SDN) have simultaneously emerged to provide
better Quality-of-Service (QoS) through flexible routing and
centralized network management. Several large-scale produc-
tion Content Distribution Networks (CDNs) such as Google
[2] have implemented Software-Defined Wide Area Networks
(SD-WANs) to efficiently perform application-aware routing
at the peering edge. According to Cisco [3], downstream
application traffic is predicted to account for 82% of all
Internet traffic by 2021. Moreover, the same report predicts
that SD-WAN traffic will account for 25% of all WAN traffic
by 2021.

HTTP/2 incorporates several improvements over its prede-
cessor, HTTP/1, which include a) multiplexing several streams
into one TCP connection, b) server-push approaches, where
content is delivered to a client without explicitly requesting
it, and c) header compression for reduced latency. These
improvements, particularly stream multiplexing, were devised
to reduce page load time such that download requests for
embedded objects such as images, video, etc., in a web
page can be issued simultaneously (instead of sequentially).
Similarly, the QUIC [4] protocol was introduced as a transport
layer candidate for HTTP/2 with one basic difference: QUIC
is based on UDP and can thus, be used to implement flexible
congestion control as well. As protocols become more versatile

to support high-bandwidth applications such as Adaptive Bit-
Rate (ABR) video streaming and 360 Virtual Reality (VR),
network architectures need to adapt in order to meet the
demands of such applications worldwide. More recently, the
introduction of flexible switch architectures such as [5] have
paved the way for line-rate processing of application-layer
headers [6]. Our demonstration investigates application-based
QoS in centrally controlled networks. In particular, this work
leverages the capability of protocol-independent packet pro-
cessors (P4) [5] at the edge of the network to define a custom
fixed-length application header and further, translate this into
a Q-in-Q (802.1ad) tag [7] for the core network in order to
perform QoS routing/provisioning.

In previous work [8], we demonstrated how HTTP/2-based
multiplexing can be used to simultaneously fetch multiple
qualities of video segments in order to improve the average
bitrate quality and thereby, the Quality-of-Experience (QoE) of
a client. In this demonstration, we show how HTTP/2 header
information can be translated as a QoS requirement using P4-
capable network elements to convert application layer header
information into a Q-in-Q tag for differentiated routing via the
core network using the Bring-Your-Own-Controller (BYOC)
feature [9] provided by the Chameleon testbed [10]. Although
we present a simple prototype using ABR streaming as an
example, we believe the capabilities of such a system extend
far beyond ABR segment retransmissions and can be used
to implement systematic integration of Information Centric
Networks (ICN) [11] with legacy networks and simultaneous
transmission of 360 video viewports [12].

II. DESIGN

A. Application header-based Traffic Engineering

1) Q-in-Q: The IEEE 802.1ad standard [7] double-tagging
was introduced to allow network service providers to separate
traffic from different VLANs as well as customers for better
traffic management. Here, we use Q-in-Q tunneling to translate
application-layer header information into link-layer headers at
the edge before packets are forwarded to the core network. In
particular, we focus on HTTP/2 application headers since they
explicitly provide header fields that can be easily interpreted
into Q-in-Q tags for better manageability.

2) HTTP/2 Header: As the number of objects embedded
within a web page began to increase, the overhead due to
variable length headers resulted in increased page load times
for HTTP/1.1. Contrarily, HTTP/2 introduces a fixed length



Control Monitoring

EDGE

EDGE CORE

EDGE

ORCHESTRATION 
AND 

VISUALIZATION

SOUTHBOUND

NORTHBOUND

Data Plane

Control Plane

Stats 
Reply

Stats 
Request

Install 
Flow

Request 
Connection

Send Network 
Information

Request Network 
Information

Content 
Server

Switch

Control Monitoring

Cellular 

Home

Fig. 1: Architecture for QoE to QoS translation at the edge,
which is envisioned as SD-WANs

header and performs header compression in order to reduce
perceived latency and increase goodput. It is interesting to note
that HTTP/2 explicitly defines the Stream ID field to multiplex
several streams into a single TCP connection and thus, can be
re-interpreted as a Q-in-Q tag by any link-layer device. In
this work, we redefine the outer customer tag (C-TAG) as a
Stream ID tag using a flexible, protocol-independent packet
processing language, P4 that can be programmed to interpret
HTTP/2 headers. For the ABR video streaming application,
Stream ID is used to differentiate between two distinct bitrate
qualities that are simultaneously downloaded by the client as
described in our previous work [8].

B. System Architecture

The main focus of our architecture is to translate
application-layer header information into link-layer headers.
We additionally includes a centralized component that allows
network providers to orchestrate and visualize their network
from a single interface. Figure 1 presents the architecture of
our demonstration and consists of the following components:

1) The Core: For our architecture we assume a capability
similar to that of a large-scale research testbed, ESNET1,
where the core or backbone network includes a programmable
data-plane that performs fine-grained traffic engineering based
on L2-L5 header information and is centrally controlled by
an independent controller (denoted as Monitoring and Control
in Fig. 1). However, we note that similar functionality can
be incrementally deployed in production networks based on
MPLS Traffic Engineering (MPLS-TE)2 techniques as well.

2) The Edge: Innovation at the edge such as SD-WANs
[2] is driven by the tremendous growth in downstream ap-
plication traffic and the advent of cloud computing. Here,
the edge network also includes a programmable data-plane
of several flexible switches that are centrally controlled by an
independent controller. However, these switches can perform
fine-grained traffic engineering using L5 header information as

1https://www.es.net/network-r-and-d/experimental-network-testbeds/
100g-sdn-testbed/

2https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/
multiprotocol-label-switching-traffic-engineering/

well. In order to peer with the core, the edge controller must
translate information in L5 headers to L2-L4 headers before
sending packets out into the core.

3) Orchestration and Visualization: Our system also in-
cludes a centralized component that aggregates monitoring
information from the various controllers in order to provide
a visual representation of network performance.

The diagram also shows clients such as a wireless home
network and cellular network that connect to an edge and
receive requested content from a server located elsewhere on
the edge network. The two edge networks are connected by
the core. In the following section, we describe the setup for
our demo including the platform and tools we use to run QoS
translation experiments.

III. SETUP

A. Chameleon Testbed

The Chameleon testbed is a deeply reconfigurable testbed
that is suitable for large-scale prototyping of distributed sys-
tems and software defined networks. In this work, we leverage
the recently released Bring-Your-Own-Controller feature along
with previously existing capabilities of the Chameleon Cloud
to create a prototype of our architecture. Figure 2 shows the
setup of our testbed, which we describe in detail.

1) HTTP/2 application: For the HTTP/2 application we
instantiate two bare-metal nodes: one that emulates a Web
server using the open source Caddy (version=0.10.10) soft-
ware and another that emulates an ABR video streaming
client, AStream3, that we modify to use an open-source
Python-based library, hyper4, that downloads video content
using HTTP/2. Note that the cross traffic nodes are bare-metal
machines used to create various network congestion scenarios
using Iperf35 for controlled experiments.

2) P4 Switch[5]: We install the behavioral model, BMV26,
software switch components in a bare-metal node, which
emulates a P4-capable switch, and then use the P4Runtime7

tool to programmatically install rules into each switch. In
future, we plan to replace this with a hardware ASIC P4
switch8 that has only recently become available.

3) OpenFlow Switch: OpenFlow [13], a widely-used imple-
mentation of SDN, is available to experimenters as a Virtual
Forwarding Context (VFC), a functionality provided by Corsa
switches, which enables each testbed user to provision a
nearly-isolated instance of an OpenFlow (v1.3) switch. After
HTTP/2 headers are translated into Q-in-Q tags as described
in Sect. II-A2, the application packets are forwarded through
the Corsa switch into the core network.

3https://github.com/pari685/AStream
4https://github.com/Lukasa/hyper
5https://iperf.fr/iperf-download.php
6https://github.com/p4lang/behavioral-model
7https://github.com/p4lang/PI
8https://www.barefootnetworks.com/products/brief-tofino/



CHAMELEON 
TESTBED SETUP

CLIENT SERVER

CROSS 
TRAFFIC

CROSS 
TRAFFIC

P4 Switch

OpenFlow1.3 
Switch

CIRCUIT1

CIRCUIT2

Network 
Monitoring

SDN 
Controller

CENTRALIZED NETWORK 
MANAGEMENT AND 
CONTROL

DISTRIBUTION 
NETWORK

Chamelon@UC Chamelon@TACC

Fig. 2: Chameleon Testbed Setup: A HTTP/2 based video streaming client uses two disjoint paths to request multiple qualities
of the same segment.

4) Core Network: In this demonstration, we provision two
VLAN circuits (denoted as Circuit1 and Circuit2) between
University of Chicago (UC) and Texas Advanced Computing
Center (TACC) using the Advanced Layer-2 Service (AL2S)
implemented by Internet2, which is a network service provider
for collaborative research9.

5) Centralized Management and Control: For orchestration
and visualization, we use Jupyter Notebooks [14], an open-
source web tool particularly suited for reproducible experi-
ments. For this demonstration, Jupyter runs inside Chameleon
and provides us with a single interface not only to run the
controller and the ABR video streaming application but also
to visualize network traffic and QoE metrics.

IV. DEMO

We will use the testbed setup described above to system-
atically compare QoE metrics such as average quality bitrate
for two traffic engineering approaches: one where ABR video
streaming retransmissions are differentially routed using a flex-
ible switch and another where retransmissions are classified as
regular HTTP traffic without any preferential treatment. Since
all of the experiment components are located in a public cloud,
for this demonstration we will require a large monitor with a
HDMI connector to allow conference attendees to view as well
as use the Jupyter web instance to interact with our experiment
and two power outlets.

V. CONCLUSION

In this work, we show how flexible switches at the edge
can be used to translate application layer header information
into link layer headers to differentially route distinct qualities
of ABR video segments in order to improve QoE of a
HTTP/2-based application. Our demonstration is performed in
a geographically distributed testbed, Chameleon, using open
source orchestration and visualization tools that are easily
available to researchers.

REFERENCES

[1] R. P. Mike Belshe and M. Thomson, “Hypertext Transfer Protocol
Version 2 (HTTP/2),” Internet Requests for Comments, RFC Editor, RFC
7540, May 2015. [Online]. Available: https://tools.ietf.org/rfc/rfc7540.txt

9https://www.internet2.edu/products-services/advanced-networking/
layer-2-services/#features-al2s

[2] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus,
M. Hines, T. Kim, A. Narayanan, A. Jain, V. Lin, C. Rice, B. Rogan,
A. Singh, B. Tanaka, M. Verma, P. Sood, M. Tariq, M. Tierney,
D. Trumic, V. Valancius, C. Ying, M. Kallahalla, B. Koley, and
A. Vahdat, “Taking the edge off with espresso: Scale, reliability and
programmability for global internet peering,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’17. New York, NY, USA: ACM, 2017, pp. 432–445.
[Online]. Available: http://doi.acm.org/10.1145/3098822.3098854

[3] Cisco, “The zettabyte era: Trends and analysis,”
2017. [Online]. Available: https://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index-vni/
vni-hyperconnectivity-wp.pdf

[4] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi, “The quic transport protocol:
Design and internet-scale deployment,” in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, ser.
SIGCOMM ’17. New York, NY, USA: ACM, 2017, pp. 183–196.
[Online]. Available: http://doi.acm.org/10.1145/3098822.3098842

[5] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014. [Online].
Available: http://doi.acm.org/10.1145/2656877.2656890

[6] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“Netcache: Balancing key-value stores with fast in-network caching,” in
Proceedings of the 26th Symposium on Operating Systems Principles.
ACM, 2017, pp. 121–136.

[7] Provider Bridges, IEEE Std. 802.1ad, 2006.
[8] D. Bhat, R. Deshmukh, and M. Zink, “Improving qoe

of abr streaming sessions through quic retransmissions:
Preprint,” 2018. [Online]. Available: https://drive.google.com/file/d/
1aa8mRKxvEaZAqqrTc8q4--LnSs7gyLxw

[9] P. Ruth, “Software-defined networking with chameleon,” 2018.
[Online]. Available: https://chameleoncloud.readthedocs.io/en/latest/
technical/networks/networks sdn.html

[10] K. Keahey, P. Riteau, D. Stanzione, T. Cockerill, J. Mambretti, P. Rad,
and P. Ruth, “Chameleon: a scalable production testbed for computer
science research,” in Contemporary High Performance Computing vol.
3. Ed. Jeff Vetter., 2017.

[11] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and
J. Wilcox, “Information-centric networking: Seeing the forest for the
trees,” in Proceedings of the 10th ACM Workshop on Hot Topics in
Networks, ser. HotNets-X. New York, NY, USA: ACM, 2011, pp. 1:1–
1:6. [Online]. Available: http://doi.acm.org/10.1145/2070562.2070563

[12] M. Hosseini and V. Swaminathan, “Adaptive 360 vr video streaming:
Divide and conquer,” in Multimedia (ISM), 2016 IEEE International
Symposium on. IEEE, 2016, pp. 107–110.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innova-
tion in Campus Networks,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 2, Mar. 2008.

[14] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay et al.,
“Jupyter notebooks-a publishing format for reproducible computational
workflows.” in ELPUB, 2016, pp. 87–90.


