
Yin and Yang:
Balancing Cloud Computing and HTCWorkloads

With the help of proper preemption policies and proactive resource schedulers, combining academic cloud and High Throughput Computing (HTC) systems through preemptible 
instances would help increase the utilization rate of the clouds and reduce the energy cost at the same time. We propose a data-driven simulator, then with which we evaluate a 
comprehensive set of resource scheduling strategies (4 preemption policies × 3 cloud user requests forecasting models).

Acknowledgements

Zhuangwei Kang, Zhuo Zhen (advisor), Kate Keahey (advisor)

Approach

Evaluation

Request Forecaster

Ø Random: arbitrary HTC nodes;

Ø Recent-Deployed: most-recent

deployed HTC nodes;

Ø Least-resource(core) Used: HTC

nodes with the least number of cores;

Ø Least-Resubmissions: HTC nodes 

with the least number of 

resubmissions

Preemption Policies

Background

Ø Combining Chameleon and HTC workloads can increase 
utilization without compromising the interactive access Chameleon 
offers.

Ø The Recent-Deployed preemption policy is the most energy-efficient 
as it yields the least HTC job re-runs.

Ø Different algorithms exhibit different trade-offs: the most energy-
efficient algorithm (Rolling-Median) has more sudden preemptions, 
while Rolling-Mean can provide more reliable advanced 
notifications to HTC with similar utilization improvement. The 
LSTM model overestimates the cloud user requests, and therefore, 
has more preemptions compared to the statistical models. 

ConclusionDesign of Experiments

Simulation data: 3000 Chameleon leases (ComputeHaswell
Node) and an HTC job log file.

Commercial cloud providers use 
preemptible instances to solve a 
similar problem.

Resource Utilization

Energy Waste Rate

HTC Node Preemption

HTC Node Preemptions (policy: Recent-Deployed)

Resource Utilization Rate (preemption
policy: Recent-Deployed, Request
Forecaster: Rolling-Median)

Mean Energy Waste Rate: The percentage of wasted core hours of completed 
jobs to the total core hours. (shadowed cell indicates the winner)

Utilization of ComputeHaswell
Node in Chameleon

Analogy

Predictive filling leads to trivial 
utilization degradation (0.21%-
1.22%) compared to the greedy 
algorithm while increasing by 
74.4%-75.9% relative to the 
Baseline (Chameleon-only). 
Rolling-Median introduces the 
lowest overhead (0.21%-
0.45%).

Problem Statement

Ø Can we fill these lease 
gaps by deploying HTC 
jobs?

Ø What is the most efficient 
way to run HTC jobs on 
preemptible instances?

Ø How can we minimize 
the cost of running HTC
jobs by reducing the need 
to re-run them?

Gantt Chart of Chameleon Host 
Reservations (Colorful bars represent leases, 
blank spaces indicate devices are spare 
during the period.)

Gaps

Experiment Description Advance
Notice

Baseline Run Chameleon user requests only No

Greedy 
Algorithm

Run HTC jobs on preemptible 
instances whenever they are available No

Predictive
Filling

Predict Chameleon user requests and 
manage the deployment of preemptible 
instances to reduce preemptions

Yes

Preemption
Types

Predict vs.
Actual

Advance
Notice # of Preemptions

Sudden < No
Reduce 42.15% ~ 54.9%
comparing to the Greedy filling
algorithm

Unused > Yes LSTM > Rolling-Mean >
Rolling-Median > Greedy Filling

Advance = Yes LSTM > Rolling-Mean >
Rolling-Median > Greedy Filling

Cloud resources for CS 
systems research need to 
be available interactively 
to support exploration; this 
may result in resources 
underutilization.

HTC involves running 
many independent tasks 
implementing a domain 
science application that
does not require
interactivity and resilient to
resource loss.

Problem with HTC: tasks 
that don’t run to completion 
are simply re-executed, 
which may waste time and 
energy.

HTCCloud

Combine them to benefit both?


