

www. chameleoncloud.org

CHAMELEON: BUILDING A RECONFIGURABLE EXPERIMENTAL TESTBED FOR CLOUD RESEARCH

Kate Keahey

keahey@anl.gov

FutureCloud Symposium October 20th 2015 Rennes, France

OCTOBER 22, 2015

WHY EXPERIMENT?

"Beware of bugs in the above code;

I have only proved it correct, not tried it"

(Donald Knuth)

"In theory there is no difference between theory and practice. In practice there is." (Yogi Berra)

EXPERIMENTS AND MODELS

- ▶ Models
 - Essential to understand the problem
 - Correctness, tractability, complexity
- Experimentation
 - ▶ Isolation: why a cloud is not sufficient for cloud research
 - ► Repeatability: repeat the same experiment multiple times in the same context while varying different factors
 - Reproducibility: the ability to repeat an experiment by a different agency
 - ► Fine-grained information everywhere
- Requirements for deep reconfigurability and control

CLOUD COMPUTING CHALLENGES

Big Data Management and Analytics

Short Response at Large Scale

Cloud research at Scale: Big Data, Big Compute, Big Instrument

Big Compute: Simulation and Analytics

Cloud Algorithms and **Programming Models**

Highly Distributed Cloud Frameworks

CHAMELEON DESIGN STRATEGY

- ► Large-scale: "Big Data, Big Compute, Big Instrument research"
 - ► ~650 nodes (~14,500 cores), 5 PB disk over two sites, 2 sites connected with 100G network
- Reconfigurable: "As close as possible to having it in your lab"
 - From bare metal reconfiguration to clouds
 - Support for repeatable and reproducible experiments
- Connected: "One stop shopping for experimental needs"
 - Workload and Trace Archive
 - Partnerships with production clouds: CERN, OSDC, Rackspace, Google, and others
 - Partnerships with users
- Complementary: "Can't do everything ourselves"
 - ► Complementing GENI, Grid'5000, and other experimental testbeds

CHAMELEON HARDWARE

To UTSA, GENI, Future Partners

Switch Standard

Cloud Unit

42 compute

4 storage

x2

Core Services Front End and Data **Mover Nodes**

Chameleon Core Network

100Gbps uplink public network (each site)

504 x86 Compute Servers 48 Dist. Storage Servers 102 Heterogeneous Servers **16 Mgt and Storage Nodes**

> Chicago Austin

SCUs connect to core and fully connected to each other

Switch

Standard

Cloud Unit

42 compute

4 storage

x10

Core Services

3.6 PB Central File Systems, Front End and Data Movers

Heterogeneous **Cloud Units Alternate Processors**

and Networks

STANDARD CLOUD UNIT

- ► Each of the 12 SCUs is comprised of a single 48U rack
 - ► Allocations can be an entire SCU, multiple SCUs, or within a single one.
- ► A single 48 port Force10 s6000 OpenFlow-enabled switch connects all nodes in the rack (with an additional network for management/control plane).
 - ▶ 10Gb to hosts, 40Gb uplinks to Chameleon core network
- ► An SCU has 42 Dell R630 compute servers, each with dualsocket Intel Xeon (Haswell) processors and 128GB of RAM
- ► In addition, each SCU has 4 DellFX2 storage servers, each with a connected JBOD of 16 2TB drives.
 - Can be used as local storage within the SCU, or allocated separately (48 total available for Hadoop configurations)

HETEROGENEOUS CLOUD UNITS

- ► One of the SCUs will also contain Connectx3 Infiniband network
- Additional HCUs are projected to contain:
 - Atom microservers
 - ► ARM microservers
 - A mix of servers with:
 - High RAM
 - FPGAs (Xilinx/Convey Wolverine)
 - NVidia K40 GPUs
 - Intel Xeon Phis
 - **SSDs**

CHAMELEON CORE HARDWARE

► Shared Infrastructure:

- ► In addition to distributed storage nodes, Chameleon will have 3.6PB of central storage, for a *persistent* object store and shared filesystem.
- An additional dozen management nodes will provide data movers, user portal, provisioning services, and other core functions within Chameleon.

► Core Network

► Force10 OpenFlow-enabled switches will aggregate the 40Gb uplinks from each unit and provide multiple links to the 100Gb Internet2 layer 2 service.

CAPABILITIES AND SUPPORTED RESEARCH

Development of new models, algorithms, platforms, auto-scaling HA, etc., innovative application and educational uses

Persistent, reliable, shared clouds

Repeatable experiments in new models, algorithms, platforms, auto-scaling, high-availability, cloud federation, etc.

Isolated partition, Chameleon Appliances

Virtualization technology (e.g., SR-IOV, accelerators), systems, networking, infrastructure-level resource management, etc.

Isolated partition, full bare metal reconfiguration

USING CHAMELEON: THE EXPERIMENTAL WORKFLOW

CHI: SELECTING AND VERIFYING RESOURCES

- Complete, fine-grained and up-to-date representation
- ► Machine parsable, enables match making
- Versioned
 - "What was the drive on the nodes I used 6 months ago?"
- Dynamically Verifiable
 - ▶ Does reality correspond to description? (e.g., failures)
- Grid'5000 registry toolkit + Chameleon portal
 - Automated resource description, automated export to RM
- ► G5K-checks
 - Can be run after boot, acquires information and compares it with resource catalog description

CHI: PROVISIONING RESOURCES

- Resource leases
- Allocating a range of resources
 - ▶ Different node types, switches, etc.
- ► Multiple environments in one lease
- Advance reservations (AR)
 - Sharing resources across time
- Upcoming extensions: match making, internal management

- ► OpenStack Nova/Blazar
- Extensions to support Gantt chart displays and other features

CHI: CONFIGURE AND INTERACT

- ► Map multiple appliances to a lease
- Allow deep reconfiguration (including BIOS)
- Snapshotting for image sharing
- Efficient appliance deployment
- ► Handle complex appliances
 - Virtual clusters, cloud installations, etc.
- ► Interact: reboot, power on/off, access to console
- Shape experimental conditions
- OpenStack Ironic, Glance, and meta-data servers

CHI: MONITORING

- Enables users to understand what happens during the experiment
- ► Types of monitoring
 - User resource monitoring
 - Infrastructure monitoring (e.g., PDUs)
 - Custom user metrics
- ► High-resolution metrics
- Easily export data for specific experiments
- OpenStack Ceilometer

CHAMELEON ALLOCATIONS AND POLICIES

- Projects, Pls, and users
- Service Unit (SU) == one hour wall clock on a single server
- Soft allocation model
- ► Startup allocation: 20,000 SUs for 6 months
 - non-trivial set of experiments
 - ▶ 1% of 6 months' tesbed capacity
- Allocations can be extended or recharged

BUILDING CHI: CHAMELEON BARE METAL

- Defining requirements (proposal stage)
- Developing architecture
- ► Technology Evaluation and Risk Analysis
 - Rough requirements based analysis
 - ► Technology evaluation: Grid'5000 and OpenStack
 - ► Implementation proposals
- ► Implementing CHI
- ► Technology Preview deployment
- ► Early User and public availability

CHAMELEON AVAILABILITY TIMELINE

- ► 10/14: Project starts
- ▶ 12/14: FutureGrid@Chameleon (OpenStack KVM cloud)
- ▶ 04/15: Chameleon Technology Preview on FG hardware
- ► 06/15: Chameleon Early User on new homogenous hardware
- ▶ 07/15: Chameleon Public availability
- ▶ 09/15: Chameleon KVM OpenStack cloud available
- ▶ 10/15: Global storage available
- ▶ 2016: Heterogenous hardware available

CHAMELEON PROJECTS

Overall: 101 projects, 187 users, 66 institutions

PLANNED CAPABILITIES

- Outreach
 - Basic training
 - Appliance sharing, methodology discussions
 - Federation activities
- ► Incremental capabilities
 - Better snapshotting, sharing of appliances, appliance libraries
 - Better isolation and networking capabilities
 - Better infrastructure monitoring (PDUs, etc.)
 - Deeper reconfiguration
- Resource management
 - Rebalancing between KVM & CHI partitions
 - Matchmaking

CHAMELEON TEAM

Kate Keahey Chameleon Pl Science Director Architect University of Chicago

Paul Rad Industry Liason Education and training **UTSA**

Joe Mambretti Programmable networks Federation activities Northwestern University

Pierre Riteau DevOps Lead University of Chicago

Dan Stanzione **Facilities Director TACC**

PARTING THOUGHTS

► Work on your next research project @ www.chameleoncloud.org!

The most important element of any experimental testbed is users and the research they work on

- How to get involved
 - Become a user: from innovative ways of extending the testbed to infrastructure research
 - ► Work with other users: sharing Chameleon appliances
 - Work with broader community: sharing traces, insights on CS experimentation, reproducibility, methodology

