Chameleon Concierge: Retrieval-Augmented Generation (RAG) To Enhance Open Testbed Documentation

CHICAGO

Good Infrastructure Demands Good Documentation

- Computing infrastructure for open science enables complex, large-scale experiments in computer and domain sciences Experimental design and methodology selection for testbeds requires
- expertise across multiple technical resource types
- Researchers need guidance to match their experimental hypotheses with appropriate infrastructure resources, configurations, and methodologies

Where Do Researchers Struggle?

- Searching for comprehensive technical solutions across multiple, disparate documentation sources is a challenge
- Leads to opening a support ticket or project abandonment, redirecting infrastructure operators away from other key operations and reducing research impacts
- Solution: implement a custom LLM search service for documentation to generate accurate and cited responses to natural language queries

How Can Advances in LLMs and RAG Help?

- Combine conventional (ReadtheDocs) and non-convention (usage data; user tickets) does for efficient information search to user queries
- Pull relevant "slices" of information from diverse sources that respond most comprehensively to the user's question
- Pass along context and sources with question to an LLM to generate a robust response with direct links to sources and up-to-date info

Grading the System's Answers

Statistical metrics for textual distances to evaluate quality:

- Compared RAG model with 20 reference answers to common questions Calculated statistical similarity to compare answers, i.e., BERTScore, but
- metrics were of limited value for evaluating the system Utilized LLM as a Judge (Claude 3.5 Sonnet) to compare positive baseline
- (expected best performance), negative baseline (expected to perform worst), and RAG answers (see images on the right)
- LLM Judge score winning answers by "win", "loss", and "tie" between the baselines and the RAG answers

Summary:

- * RAG models generated accurate and cited answers to a variety of user queries
- The similarity metrics were not sufficient to determine compare performance; Judge method provides more meaning evaluation results to determine system quality
- * Top RAG performance is higher than that of a generic LLM and comparable to a free-tier proprietary LLM
- * RAG systems designed around high-quality documentation sources can fill the gap between the researchers' knowledge and limitations of static documentation
- RAG is not a guaranteed replacement for existing proprietary models, but optimized correctly, one can yield definite benefits

Future work:

- Enhance data sources by including specialized data (i.e., user ticket data sanitized to remove private data)
- Explore new generation designs and other evaluation methods through user-provided rankings of answers