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v Computing infrastructure for open science enables complex, large-scale 
experiments in computer and domain sciences

v Experimental design and methodology selection for testbeds requires 
expertise across multiple technical resource types

v Researchers need guidance to match their experimental hypotheses with 
appropriate infrastructure resources, configurations, and methodologies

Good Infrastructure Demands Good Documentation

v Searching for comprehensive technical solutions across multiple, 
disparate documentation sources is a challenge

v Leads to opening a support ticket or project abandonment, redirecting 
infrastructure operators away from other key operations and 
reducing research impacts

v Solution: implement a custom LLM search service for documentation to 
generate accurate and cited responses to natural language queries

Where Do Researchers Struggle?

How Can Advances in LLMs and RAG Help?
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Summary:
v RAG models generated accurate and cited answers to a variety of user queries
v The similarity metrics were not sufficient to determine compare performance; Judge method provides more meaning evaluation results to 

determine system quality
v Top RAG performance is higher than that of a generic LLM and comparable to a free-tier proprietary LLM 
v RAG systems designed around high-quality documentation sources can fill the gap between the researchers’ knowledge and limitations of 

static documentation
v RAG is not a guaranteed replacement for existing proprietary models, but optimized correctly, one can yield definite benefits

Future work:  
v Enhance data sources by including specialized data (i.e., user ticket data sanitized to remove private data)
v Explore new generation designs and other evaluation methods through user-provided rankings of answers

Insights

Statistical metrics for textual distances to evaluate quality: LLM-as-a-Judge to compare pairwise and select 
best answer of each match-up:
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v Combine conventional (ReadtheDocs) and non-convention (usage data; 
user tickets) docs for efficient information search to user queries

v Pull relevant “slices” of information from diverse sources that respond 
most comprehensively to the user’s question

v Pass along context and sources with question to an LLM to generate a 
robust response with direct links to sources and up-to-date info

Scan to view a demo

v Compared RAG model with 20 reference answers to common questions
v Calculated statistical similarity to compare answers, i.e., BERTScore, but 

metrics were of limited value for evaluating the system 
v Utilized LLM as a Judge (Claude 3.5 Sonnet) to compare positive baseline 

(expected best performance), negative baseline (expected to perform 
worst), and RAG answers (see images on the right)

v LLM Judge score winning answers by “win”, “loss”, and “tie” between 
the baselines and the RAG answers


