
CHI@Edge: Supporting Experimentation in the Edge to Cloud
Continuum

Kate Keahey
Argonne National Laboratory

Lemont, Illinois, USA
keahey@uchicago.edu

Michael Sherman
University of Chicago

Chicago, IL, USA
shermanm@uchicago.edu

Jason Anderson
University of Chicago

Chicago, USA
diurnalist@gmail.com

Mark Powers
University of Chicago

Chicago, IL, USA
markpowers@uchicago.edu

Abstract
Infrastructure for Computer Science research is a scientific instru-
ment that supports a wide range of experimental scenarios through
interactive, isolated, multi-tenant usage, that allows many investi-
gators to conduct original experimentation while preserving the
privacy of their research and without impacting each other’s work.
This type of infrastructure needs to evolve as the scientific fron-
tier advances, to support new types of experiments required for
investigate new phenomena. Recently, the widespread availability
of inexpensive yet powerful single board computers (SBCs) and
Internet of Things (IoT) devices, revolutionized the opportunities
available to science, but at the same time created a need for a new
type of scientific instrument that would support experimentation
in the edge to cloud continuum.

This paper describes the design and implementation of such an in-
strument (CHI@Edge), developed as an extension of the Chameleon
Cloud, which has served 11,000+ users working on 1,200+ unique
projects in Computer Science research, education, and emergent
applications. We describe the requirements developed with our
user community, the architecture and implementation of the sys-
tem, and then illustrate how it has been used by computer science
applications.

CCS Concepts
• Computer systems organization→ Cloud computing; Em-
bedded and cyber-physical systems.

Keywords
Edge Computing, Cloud Computing, Edge to Cloud Continuum

ACM Reference Format:
Kate Keahey, Michael Sherman, Jason Anderson, and Mark Powers. 2025.
CHI@Edge: Supporting Experimentation in the Edge to Cloud Continuum.
In Practice and Experience in Advanced Research Computing (PEARC ’25),
July 20–24, 2025, Columbus, OH, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3708035.3736014

This work is licensed under a Creative Commons Attribution 4.0 International License.
PEARC ’25, Columbus, OH, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1398-9/25/07
https://doi.org/10.1145/3708035.3736014

1 Introduction
Computing infrastructure continues to evolve at a rapid pace through
innovation in architectures, accelerators, and networking technolo-
gies. This evolution creates opportunities, but also poses a problem:
how can we put such innovative infrastructure in the hands of as
many students and scientists as possible so that they can understand
and unlock its potential? The solution is to create a shared scientific
instrument [25], that amortizes expensive and complex hardware
procurement, by operating it in a way that that supports as large
as set of experiments as possible, for as many users as possible. In
computer science this type of scientific instrument is usually called
a testbed. To do it’s job, a testbed must support multi-tenant, inter-
active, and isolated usage, that allows many investigators to conduct
a broad range of original experimentation without impacting each
other’s work. Such usage is typically enforced by a variety of mech-
anisms ranging from assigning whole resources for individual use
via bare metal reconfiguration for systems research [16, 24]; use
of virtual machines where performance isolation is not required
[22, 24]; or the creation of isolated networks [7, 30].

Another important characteristic of scientific instruments is that
to be useful, they need to evolve as the scientific frontier advances,
and new research topics and opportunities emerge that necessitate
the support of new types of experiments. In recent years, the wide-
spread availability of inexpensive yet powerful single board com-
puters (SBCs) and Internet of Things (IoT) devices revolutionized
the opportunities available to science: a low-power SBC, combined
with environmental sensors, can be used to obtain data support-
ing a better understanding of the environment. At the same time,
building systems that use those devices at scale challenges the as-
sumptions we make about infrastructure, system properties, and
applications, and thus requires significant new research to make
good on the promise of this new technology. To support this re-
search, we need infrastructure that will enable experimentation in
the edge to cloud continuum, allowing scientists to deploy and try
new approaches to programming in the edge to edge space as well
as in the edge to cloud space.

In this paper, we present the architecture and implementation
of CHI@Edge, an edge-based infrastructure that extends the ex-
perimentation supported by the existing Chameleon Cloud [24],
to operate in the edge to cloud continuum. We note that to effec-
tively support interesting edge experiments, we have to extend the
traditional concept of infrastructure confined to a datacenter and

https://orcid.org/0000-0002-5251-5466
https://orcid.org/0000-0002-0352-8842
https://orcid.org/0000-0002-1627-3906
https://orcid.org/0000-0001-9002-6586
https://doi.org/10.1145/3708035.3736014
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3708035.3736014


PEARC ’25, July 20–24, 2025, Columbus, OH, USA Keahey et al.

operated by a team of trained professionals, to allow users to add
and operate their own devices as its integral part. We support this
capability by introducing the Bring Your Own Device (BYOD) para-
digm, and a new role of a device operator user, supplementing the
traditional division between infrastructure operator and end-user
roles, and resulting in a “mixed operation” resource. We introduce
the architecture and architectural elements needed to support a
system of this kind; describe its implementation; and discuss to
what extent, this type of edge to cloud continuum infrastructure
can be supported by the same abstractions that support the current
Chameleon system. Lastly, we describe case studies of experiments
that the extended system enables to illustrate its capabilities.

2 The Core Chameleon Infrastructure
Chameleon is an NSF-funded distributed testbed that supports com-
puter science research, education, and emergent applications [24].
To cover the broadest possible range of experiments, Chameleon
is configured as a cloud to support interactive usage, with most of
the system reconfigurable at the bare metal level – as needed for
experiments in performance or power management – and a smaller
portion of the system reconfigurable via virtual machine (VM) de-
ployment for more efficient use of resources where bare metal is
not needed [24, 28]. Most of Chameleon’s hardware is hosted at the
University of Chicago (UChicago) and Texas Advanced Computing
Center (TACC), soon to be joined by NCAR, as the core resource
providers, as well as several volunteer sites. Since its public avail-
ability in July 2015, Chameleon has served a total of 12,000+ users
(700-800 unique users log into Chameleon every month), working
on 1,200+ projects; collectively this community has produced 800+
research publications that we were able to track.

The core Chameleon end-user experimental workflow has been
described in detail in [28]; briefly, users first use a resource discov-
ery service and an availability calendar to identify desired resources;
allocate selected resources either on-demand or by making an ad-
vance reservation; and then reconfigure them using one of the
images supported by the Chameleon team or one that they create
themselves. Interfaces to the services supporting these actions are
available via federated identity authentication [4] and presented
through a graphical user interface (GUI), a command line interface
(CLI), and programmatically via a python-chi library [12] that can
be used from within a Jupyter environment (see below).

Both bare metal and virtualized Chameleon offerings are based
on a version of OpenStack [19], a mainstream, open-source imple-
mentation of Infrastructure-as-a-Service (IaaS) – with significant
customizations made by the Chameleon team overtime to adapt the
system to our use case. Examples of the latter include bare metal
snapshotting (not available from the main OpenStack installation),
support for federated identity access, additional networking fea-
tures including stitching, integration with Jupyter, and resource
discovery services. Many of the modifications were contributed
back to OpenStack by the team, in particular, Blazar (OpenStack
component handling advance reservations), where the Chameleon
team was one of the main contributors.

3 Requirements: the Shape of an Edge Testbed
The objective of computing at the edge is to support interaction
with the environment, typically carried out via some form of envi-
ronmental sensing (e.g., cameras or other IoT sensors interacting
with a physical environment), combined with an enhanced ability
to compute and communicate. The former implies deployment out-
side of the datacenter, potentially in a vulnerable physical context
where power is not readily available, and in a heterogeneous net-
working context, giving each edge device unique properties. The
latter entails not just the need for computational power but also
programmability which we define as support for Linux and at least
some mainstream tools. For this reason, we define the edge devices
in our system to be SBCs, such as Raspberry Pis or NVIDIA Jetson
Nanos, each interacting with potentially multiple IoT peripherals.

The central tension underlying the design of this type of in-
frastructure is how to support sufficiently expressive experimental
topologies, given the lesser capability, security, and configurabil-
ity – and significantly greater deployment heterogeneity of such
instruments. In this section we boil this down to key requirements,
developed over the last four years with significant input from the
Chameleon community over a series of requirement discussions,
pilot solution trials, as well as through a community workshop [23].

Rich and consistent testbed interfaces. To support sufficiently ex-
pressive experimental topologies the end-user capabilities and in-
terfaces are expected to be roughly the same as in the datacen-
ter testbed. On a basic level the entails support for the general
Chameleon experiment pattern [28] consisting of resource discov-
ery (adapted to support ephemeral resource availability); the ability
to allocate time on specific devices in a multi-user environment via
advance reservations or on-demand [27]; and a non-prescriptive
configuration method. In addition, users expect support for a broad
range of experimental topologies, including bi-directional commu-
nication between the cloud and the devices and the devices between
themselves. Those interfaces are expected to be consistent with the
original testbed and include many popular features such as feder-
ated identity access[4], consistent graphical, command-line, and
programmatic interfaces accessible via JupyterHub integrated with
the testbed [3], and the potential to federate with other testbeds,
such as FABRIC [7].

Bring Your Own Device (BYOD).While there is some interest in
using edge devices in a shared datacenter context (e.g., for perfor-
mance comparisons), most users are interested in using their own
devices, usually combined with peripherals associated with a spe-
cific environmental context [23]. The user expects that by adding
the device – or a collection of devices – to the testbed, they will
be able to provide secure sharing and programmability of those
devices (as per the interfaces above). In contrast to the traditional
testbed model, the primary incentive to use the testbed in this case
is not so much access to resources as access to reliable methods of
resource management and sharing. There are a few implications
of this changed modus operandi. First, it invalidates many of the
assumptions we make about resources in the datacenter – for exam-
ple, resources can come up and disappear ephemerally and have to
be managed without physical access – which adds a new manage-
ment layer to testbed infrastructure. Second, unlike in a traditional
testbed where resources typically are available to any user in the



CHI@Edge: Supporting Experimentation in the Edge to Cloud Continuum PEARC ’25, July 20–24, 2025, Columbus, OH, USA

testbed, the deployment context of edge devices often means that
they are only available for limited sharing to a whitelist of end-user
collaborators (e.g., in an autonomous driving class devices may be
deployed by a teacher are relevant to the participating students but
not to others outside of the class). Lastly, users adding devices to
the testbed now assume the role of a device operator, and have to
be supported in this role.

Support for IoT devices/sensors. In many cases, users will asso-
ciate their device with potentially multiple Internet of Things (IoT)
peripherals such as sensors (e.g., cameras) or actuators (e.g., such as
a throttle on autonomous vehicles [40]). Since we are building ex-
perimental systems – rapidly evolving and frequently reconfigured
– it is essential that we provide the path to support many different
types such IoT peripherals attached to one device in a flexible and
customizable manner. This implies not only being able to connect
the peripheral to a device in a useful fashion (i.e., such that they can
be accessed and programmed by the users), but that this process
is adaptable to support new peripherals as they become available
with minimal operator assistance, and full support through testbed
services like hardware discovery.

Deployment/Networking considerations. The fact that the deploy-
ment of devices is likely to be performed by an operator user rather
than a network administrator with special privileges limits the as-
sumptions we can make about device connectivity. The general
principle we apply is captured by saying that connecting a device
to the network should be “no harder than connecting a laptop”. In
particular, device deployment has to accommodate a variety of net-
work scenarios (e.g., potentially traversing NATs or firewall layers),
and should not require the device operator to make any special
arrangements (e.g., that the device has been assigned a public IP ad-
dress) that may not be practical or possible – at the same time, our
first requirement of supporting Chameleon modus operandi still
holds. Further, although no special network configurations should
be required, users interested in research on alternative network
mediums or protocols (e.g., software defined radios [14]) should still
be able to perform their research, either by creating and using al-
ternative communication channels, or by specializing the platform
implementation.

Added to these functional requirements is our general philos-
ophy, successfully deployed in Chameleon, of building things in
as much as possible using mainstream software so as to leverage
sustainability it brings though working with large development
communities.

4 Architecture
Based on the considerations described above, we present an archi-
tecture for CHameleon Infrastructure at Edge (CHI@Edge) that
supports OpenStack interfaces consistent with the datacenter part
of the testbed, in particular, support for the end-user experimen-
tal workflow defined in Section 2. Given the lack of support for
out-of-band management, such as the IPMI used for Chameleon’s
baremetal deployment process, we chose to support reconfigura-
bility via container deployment, since it provides a good trade-off
between non-prescriptive resource configuration and implemen-
tation of isolation that is sufficiently lightweight. This was found
acceptable [23], given that SBCs are low in price (if bare metal is

required uses can simply buy a device). Users can combine their
edge devices with IoT peripherals via a general-purpose peripheral
framework allowing them to support arbitrary combinations of
devices and peripherals.

The CHI@Edge architecture is depicted in Figure 1. In addition
to the roles of operator and end-user present in Chameleon In-
frastructure (CHI) [28], we now also have the user role of device
owner/operator. In order to add a new device to the testbed, the
device operator downloads the BYOD client and uses it to config-
ure the device. The configuration process triggers a request to the
testbed registration service (Doni), to add the device to the list of
available resources together with the policies for limited sharing.
The request is authenticated by the user’s testbed credentials, which
are then used to generate a unique token that is put on the image the
device is flashed with. Subsequently, the token is used by the Device
Management Services as root of trust. Once a device is added, it
becomes a part of the testbed (potentially with limited sharing); the
end-user workflow does not thus differ substantially from what we
described in Section 2: the end-user can make advance reservations
for the device and reconfigure them using container deployment
via OpenStack interfaces.

Figure 1: Interactions between the architectural roles and
components of CHI@Edge.

Below, we describe components of the architecture and their
requirements.

The Doni Registration Service. The Registration Service exposes
an API that allows the user to register a device and fill out its
profile, rooting trust in the device operator’s OpenStack credentials.
Subsequently, the device operator can update a device (e.g., change
its sharing configuration); report information/status of the device;
and refresh/sync device state. Providing an explicit service with
well-defined APIs automates inventory management and allows
us to handle the complexity of dynamic additions and deletions of
potentially ephemeral devices. It is also key to providing support
for the device operator role without granting full testbed operator
permissions to operator users. This is a new service, implemented
specifically to support the BYOD functionality.

Device Management Service, Agent, and system support. The role
of the device management component is to provide an underlayer
that allows testbed operators to manage devices without physi-
cal access. This includes reliably bootstrapping devices remotely



PEARC ’25, July 20–24, 2025, Columbus, OH, USA Keahey et al.

without physical access, including the management of configura-
tion, security, and networking. This layer also needs to provide
remote access for debugging the configuration of a device, and
rollback support, i.e., the ability to recover from failed configura-
tion changes, critical to providing fully remote device management.
The device management component consists of the Device Man-
agement service; system support (rollback function); as well as an
agent executing on each device.

Channel Service (Tunelo).As part of compatibilitywith the Chameleon
modus operandi, users expect to be able to access instances via
public IP address, and to send traffic between instances on non-
public networks. CHI@Edge devices are often deployed behind
firewalls and NAT, and the existing mechanisms in Neutron, de-
veloped for the datacenter use case, do not support connectivity
in these conditions. Tunelo orchestrates a network underlayer, en-
abling communication between containers on different devices, and
between containers and networking services on the OpenStack
control-plane, that can then serve as a base for the support of such
features as floating IPs. This underlayer connection is typically pro-
visioned when a device is registered, but can be updated on-demand
if necessary, e.g., to rotate encryption secrets. The channel service
manages the lifecycle of these underlayer connections, and its API,
while exposed externally, is only consumed by other CHI@Edge
services.

BYOD client. The BYOD client consists of a Python library and
CLI tooling which is installed and invoked by device operators.
It allows the device operator to register a new device with the
testbed, download, configure, and flash an SD card image to the
device, including necessary tokens or secrets, inspect the device’s
status, and manage access to the device including which tenants
can reserve and use the device. The BYOD client is primarily a
client for the registration service (Doni).

OpenStack APIs and Chameleon Front-end. Much of the function-
ality of CHI@Edge mirrors the main Chameleon testbed and can be
provided by the same OpenStack services with exceptions called out
in Figure 1. Together, these services process user requests, allocate
resources, and manage containers. Relying on the same APIs means
that we can re-use Chameleon clients including the command-line
interface, python-chi (both integrated with Jupyter), and the GUI for
edge devices. In addition to providing user convenience, these APIs
allow us to leverage investment in all of the front-end Chameleon
features built over time, including support for federated identity,
and orchestration features.

Container Management Service and Container Agent. The Con-
tainer Management Service manages container deployment on the
back-end of the OpenStack APIs. This allows us to preserve API
compatibility while supporting reconfiguration via container de-
ployment on the edge; aside from support for the ARM64 architec-
ture, the requirements for container implementation are a minimal
power footprint.

5 Implementation
Our greatest implementation challenge was to provide a secure
device management layer. We chose to base its implementation on
Balena [8], because it provides all the basic service/agent function-
ality needed for secure device management, as well as the critical

capability for reliably supporting device bootstrap without physical
access. The latter is provided by a rollback feature, implemented
via modification of the Operating System’s boot process, (configu-
ration changes are written to a secondary partition, and if a reboot
onto that partition fails, the rollback feature triggers an automatic
reboot to the working configuration). Balena provides a library of
base system images supporting this feature on a variety of systems,
and build recipes that can be extended to support new systems if
needed [9].

We use this reliable base to deploy and manage the necessary
runtime configuration of each device, including the Tunelo and
container agents, and host-level parameters needed for peripheral
management. This runtime configuration, or “fleet” in Balena’s
terminology, packages a set of Docker containers, configuration
for said containers, host-level parameters, and maps it to a set of
devices which are members of the fleet. The registration service
uses Balena’s API to create an entry for each device in the fleet, and
to apply per-device overrides for parameters such as authentication
tokens. The registration service also consumes the API to generate
a unique device bootstrap token; the device operator toolkit injects
this token into the image flashed onto the device, and thereby maps
a given physical device to the logical one created by the registration
service.

The next implementation challenge was to provide lightweight
container management while preserving Chameleon interfaces. We
explored the OpenStack Zun project [36], but found it too heavy-
weight for our use case. Instead, we chose to use K3s, which is a
small (50MB) single-binary distribution of K8s; it has good sup-
port for ARM architectures and is designed with devices like the
Raspberry Pi and Jetson Nano in mind. We combined this imple-
mentation with a Zun API by writing a new plugin to translate
Zun’s container driver interface into the K8s API server interface;
replacing Zun’s default plugin which communicates with Docker
daemon directly. This gave us the desired combination of rich and
consistent interfaces with lightweight implementation.

To provide both connectivity and protection for user traffic, we
decided to implement an overlay network, consisting of a hub-and-
spoke topology implemented via WireGuard tunnels. The hub-and-
spoke topology was chosen because the CHI@Edge management
nodes (the hub) have publicly routable IPs, needed so that edge
devices behind NAT can initiate a tunnel to that public address
thereby creating a connection (the spoke). Furthermore, the Float-
ing IP service is the primary consumer of the tunnels and is co-
located with the hub port. Finally, the hub port acts as a security
control, enforcing a whitelist of allowed source and destination
subnets, preventing a rogue device from bridging to an arbitrary
local network. WireGuard was chosen due to its lightweight en-
cryption protocol built on asymmetric keys, and robust support for
traversing NAT. The Tunelo service provides an API for creating
and managing channels, each channel corresponding to a pair of
tunnel endpoints. When a channel is created or updated in Tunelo,
the “hub” end of the tunnels, being co-located with the Neutron
networking service, is configured by a custom Neutron “Wireguard
Agent” and ML2 plugin, while the “spoke” end on the devices is
configured by the “Tunelo Agent” running on each device.

While this enables communication between two arbitrary edge
devices, each potentially behind a NAT, it does not address latency,



CHI@Edge: Supporting Experimentation in the Edge to Cloud Continuum PEARC ’25, July 20–24, 2025, Columbus, OH, USA

bandwidth, or network scaling issues such as excessive broadcast
traffic or flooding. Additionally, using only the tunnel interface
would mean that this communication is always routed through
CHI@Edge management nodes even if the devices are on the same
local network. For this reason, networking between containers is
implemented by the Calico CNI (Kubernetes Container Network
Interface), with a separate subnet on each device, and BGP routing
and IPIP encapsulation to enable routing packets between contain-
ers on different devices. As each node running Calico (device or
management server) participates in BGP, all devices can route via
the hub port, but can also use a shorter path if provided by a com-
mon local network. Using this framework, we implement standard
OpenStack networking semantics: floating IPs are implemented by
routing between the Neutron L3 agent and container IPs on Calico
networks, and security groups are supported by mapping them to
Calico Network Policies. Dedicated, tenant-isolated, Layer 2 net-
works (as implemented by OpenStack via VxLAN or VLAN) are not
supported, per-tenant isolation is instead implemented via ACLs, a
default policy restricting communication to containers owned by
the same tenant, the same semantics as instances launched on the
same Openstack Network. While we do lose the ability to directly
attach containers to L2 segments, useful for certain experiments
such as ultra-low latency protocol development [35], as future work,
we are investigating approaches to pass physical interfaces directly
to containers, bypassing this limitation.

The approach to securing the system in CHI@Edge is based on
the tenet that while we cannot guarantee that individual devices
won’t be compromised (in particular since we don’t always con-
trol them), we can’t allow a compromise to spread to the system
or resources that it uses such as local networks. For this reason,
control plane software running on edge devices has limited creden-
tials, i.e., it can only enumerate resources on the cluster and issue
writes against resources under the device’s purview (e.g., its config
or containers running on it.). Further, traffic between the control
plane and the device uses an encrypted websocket connection (part
of the K3s implementation) to avoid malicious man-in-the-middle
attacks taking over the device. While containers on edge devices
may be able to scan or access local network resources, we mitigate
this with traffic rules that we provision on the device at enrollment;
since however such access may actually be desirable this is config-
urable by the device owner (but not container owner). Similarly, we
protect ingress to containers via security groups configured on con-
tainer deployment, but we allow the container owner to override
those protections at their own peril. Since containers can only be
launched on devices that are reserved this is where limited sharing
is implemented: the user specifies policies on who can access the
device on registration or via the SDK and the information is passed
to Blazar which enforces them.

6 CHI@Edge Use for Education and Research
CHI@Edge has been used in a variety of edge to cloud research
projects in areas such as network fingerprinting, federated learning,
and in a range of projects exploring using edge to cloud continuum
in domain science. Some of those use cases are described in the
report from the 3rd Chameleon User Meeting [23], and some are

described via the Chameleon user blog or in reported user pub-
lications [13, 18, 20, 21, 41, 44]. In this section, we walk through
two case studies, each describing how the requirements laid out
in Section 3 are used in the implemented system to create experi-
mental environments; for results relating to these projects see the
referenced publications.

6.1 AutoLearn
Autonomous driving is a fun and experiential way of introducing
students to concepts ranging from engineering to ML. In this case
study, mainstream SBCs are either tied to a custom vehicle or inte-
grated in a commercially available model, equipped with a camera
and a steering system: the SBC receives input from the camera and
provides commands to the throttle to steer the car. The full instruc-
tion or experiment cycle consists of data collection from a manually
driven vehicle; training phase where the obtained data is used to
train models in the cloud; and inference phase where the models are
used to drive the vehicle autonomously. CHI@Edge has been used
in this capacity for education in Rick Anderson’s "Foo Cars" project
[5] at Rutgers University using the DonkeyCar autonomous vehicle
software framework [15]; has been translated into an instructional
module packaged for use on Chameleon [17, 18]; and ultimately
leveraged to support independent student projects [20] [44].

Figure 2: Experimentation with autonomous vehicles. Left
to right: programming the vehicle from a Jupyter notebook;
custom-made autonomous vehicle with camera, steering sys-
tem, andRaspberry Pi; data collection along a selfmade track;
comparison of steering data between human-controlled and
autonomous runs.

This case study illustrates how the BYOD supports the experi-
mental cycle by first allowing the user to add the SBCs associated
with the car to Chameleon; this is easily done by ensuring that
the SBC is connected to a local wifi and following the device oper-
ator workflow. The detection of peripherals, in this case, camera
and serial interface, takes place automatically. As a result of this
process, the SBCs, each representing a vehicle, become available
via the testbed resource discovery mechanisms for limited sharing
with members of a research group or a class, with the group lead
or the class teaching assistant (TA) assuming the role of device
operator. Members of the group/class can then allocate the devices,
including via advance reservations, and deploy instances on them
for data collection or inference; allocate additional GPU resources
on Chameleon as needed for training purposes, or execute edge
to cloud inference workloads [44]. Since both CHI@Edge and the
core Chameleon testbed support consistent interfaces and front-end
infrastructure, users can program the cycle from one collection of



PEARC ’25, July 20–24, 2025, Columbus, OH, USA Keahey et al.

Jupyter notebooks integrated with the testbed, effectively program-
ming all the resource allocation across edge and cloud from one
session.

6.2 5G in Practice
Fifth-generation (5G) wireless technologies offer the promise of
better Internet access in rural communities; in order to prove it
we need to measure it. Ideally, we’d like to understand how 5G
wireless technologies compare to wired connections and existing
rural wireless in speed (throughput and latency), and in supporting
distributed computation workloads. One way to do this is to deploy
SBCs, equipped with a mix of mmWave 5G radios, fiberoptic net-
work connections, and pulse-per-second (PPS) GPS timing signals
in key locations across an area of interest and then compare net-
work speed over different connections. This approach was deployed
in a project measuring network speeds across rural Iowa [34].

Using CHI@Edge BYOD, a researcher was able to deploy several
Raspberry Pi devices, configured with the IoT peripherals enumer-
ated above, across a 6 mile radius, including university buildings,
city buses, and farms, to cover a variety of wireless environments.
Once deployed, the Pis became programmable; the researcher could
now deploy several distinct applications representing different mea-
surement methods, ranging from simple bandwidth and latency
measurements to both local and distant servers, to an additional
application packaging Apache Hadoop to run the TeraSort bench-
mark [6] illustrating how the scaling of this workload changes if
the workers are connected via a 5G wireless connection versus a
wired Ethernet one. The data from those measurements was sent
to services deployed in the datacenter to collect, store, and analyze
results. Once, the BYOD deployment portion of the experiment
was accomplished, the edge to cloud workflow consisted of allocat-
ing and deploying the different measurement applications; cloud
storage for data; long-running compute cycles for the necessary
services on the KVM part of Chameleon; and analysis resources on
the bare metal partition. As before, common interfaces meant that
the whole workflow together could be supported from a consistent
set of Jupyter notebooks.

7 Related Work
The most relevant comparison of our work is to other exploratory
testbeds supporting computing at the edge, including projects like
COSMOS [38], ORBIT [37], POWDER [11], AERPAW [29], ARA
[43], KTH’s ExPECA [33] and the FIT IoT Lab [1]. These infras-
tructures support isolated multi-tenant use, but focus on fewer,
more powerful and expensive edge devices, that are deployed and
operated by the testbed rather than users, and therefore assume full
control over the network between edge devices and the testbed core.
This means that they don’t support BYOD and everything it entails,
in particular overlay networks or tunnel services to ensure secure
and isolated network use. We note that while ARA falls into this
category, it has derived its operations framework from CHI@Edge
and thus could be extended to provide such support as needed.

Observatory infrastructure, such as FLOTO [26] and Sage [39], fo-
cus on experiments that support observation and measurement [26].
These platforms support isolated multi-tenant use via container-
based reconfiguration, allowing for a wide range of interactions

but limit their focus to observational applications (e.g., processing
camera inputs or running tests of Internet infrastructure) and send
collected data to a central aggregation point. These types of infas-
tructure disallow inbound traffic to the devices (only the device
sends data) which simplifies the security structure so that overlay
networks or tunnel services are again not needed.

Commercial IoT systems such as AWS IoT Greengrass [2], Azure
IoT Edge [32], Balena [8], and Mender [31] focus on targeted edge
deployments that install an agent on a device and then use the
agent to manage the device to support a specific application and
thus do not support the isolated multi-tenant pattern. CHI@Edge is
built on top of OpenBalena, and adds support for the isolated multi-
tenant pattern as well as other features such as advance reservations
allowing for interactive and timed usage and support for federated
identity.

Some approaches choose to use more “prescriptive” methods of
interacting with a device, limiting what types of actions a user can
deploy on a device (e.g., by using function as a service approach).
CSPOT [42] and Stack4Things [10] fall into this category; the nar-
rower interfaces they provide are capable of supporting only a
subset of our use cases but have the advantage of being more easily
sustained on lower power devices.

8 Conclusions
In this paper, we describe CHI@Edge, an extension of Chameleon –
a popular testbed for computer science research operated as a cloud
– to the edge.We note that this extension changes the understanding
of what research infrastructure may constitute. Traditionally, it has
been understood primarily as datacenter-based hardware resources,
secure and operated by professionals. In contrast, CHI@Edge repre-
sents a type of resource in which relatively inexpensive resources,
usually deployed outside of a datacenter, are part operated by a
specialized type of user, the device operator. This suggests that the
key service provided by the infrastructure is an effective imple-
mentation of sharing and a connection to residual/cloud testbed
resources, shareable in ways consistent with the edge devices.

Our case studies show examples of research applications/experiments
that can effectively leverage resources available in the “edge to cloud
continuum”. We note that in practice, the work of such applications
will touch on many types of continuum: the computing continuum
as users move from powerful – and high powered – datacenter
resources to less powerful resources with more modest power re-
quirements, configuration continuum as we move from the ability
to reconfigure resources at bare metal to methods allowing greater
encapsulation, or networking continuum as we move from pow-
erful and fully controlled networks to a mix of fabrics with lesser
availability and reliability. Achieving effective programmability
over this type of infrastructure will require building abstractions
supporting computation is likely to move dynamically based on the
interplay of multiple optimization factors.

Acknowledgments
Results presented in this paper were obtained using the Chameleon
testbed supported by the National Science Foundation grant number
2027170. This material is based upon work supported by the U.S.



CHI@Edge: Supporting Experimentation in the Edge to Cloud Continuum PEARC ’25, July 20–24, 2025, Columbus, OH, USA

Department of Energy, Office of Science, under contract number
DE-AC02-06CH11357.

References
[1] Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton,

Thomas Noel, Roger Pissard-Gibollet, Frederic Saint-Marcel, Guillaume Schreiner,
Julien Vandaele, and Thomas Watteyne. 2015. FIT IoT-LAB: A large scale open
experimental IoT testbed. In 2015 IEEE 2nd World Forum on Internet of Things
(WF-IoT). IEEE, Milan, Italy, 459–464. doi:10.1109/WF-IoT.2015.7389098

[2] Amazon. 2023. AWS IoT Greengrass. https://aws.amazon.com/greengrass/
[Online; accessed 21-December-2023].

[3] Jason Anderson and Kate Keahey. 2019. A case for integrating experimental
containers with notebooks. Proceedings of the International Conference on Cloud
Computing Technology and Science, CloudCom 2019-December (12 2019), 151–158.
doi:10.1109/CLOUDCOM.2019.00032

[4] Jason Anderson and Kate Keahey. 2022. Migrating towards Single Sign-On and
Federated Identity. In Practice and Experience in Advanced Research Computing
2022: Revolutionary: Computing, Connections, You (Boston, MA, USA) (PEARC ’22).
Association for Computing Machinery, New York, NY, USA, Article 8, 8 pages.
doi:10.1145/3491418.3530770

[5] Rick Anderson. 2023. FooCars. https://github.com/fubarlabs/foocars [Online;
accessed 21-December-2023].

[6] Apache Software Foundation. 2024. TeraSort - Apache Hadoop.
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/examples/
terasort/package-summary.html Apache Hadoop 3.3.6 API Documentation.

[7] Ilya Baldin, Anita Nikolich, James Griffioen, Indermohan Inder S. Monga,
Kuang Ching Wang, Tom Lehman, Paul Ruth, and Ewa Deelman. 2019. FABRIC:
A National-Scale Programmable Experimental Network Infrastructure. IEEE
Internet Computing 23 (11 2019), 38–47. Issue 6. doi:10.1109/MIC.2019.2958545

[8] "Balena". 2023. Balena Cloud. https://www.balena.io/ [Online; accessed 20-
December-2023].

[9] Balena. 2025. Customer Board Support. https://docs.balena.io/reference/OS/
customer-board-support/ Last accessed 30 June 2025.

[10] Zakaria Benomar, Francesco Longo, Giovanni Merlino, and Antonio Puliafito.
2020. A Stack4Things-based Web of Things Architecture. In 2020 International
Conferences on Internet of Things (iThings) and IEEE Green Computing and Com-
munications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermat-
ics). IEEE, Rhodes, Greece, 113–120. doi:10.1109/iThings-GreenCom-CPSCom-
SmartData-Cybermatics50389.2020.00036

[11] Joe Breen, Andrew Buffmire, Jonathon Duerig, Kevin Dutt, Eric Eide, Mike Hibler,
David Johnson, Sneha Kumar Kasera, Earl Lewis, Dustin Maas, Alex Orange, Neal
Patwari, Daniel Reading, Robert Ricci, David Schurig, Leigh B. Stoller, Jacobus
Van der Merwe, Kirk Webb, and Gary Wong. 2020. POWDER: Platform for
Open Wireless Data-driven Experimental Research. In Proceedings of the 14th
International Workshop on Wireless Network Testbeds, Experimental Evaluation
& Characterization (London, United Kingdom) (WiNTECH ’20). Association for
Computing Machinery, New York, NY, USA, 17–24. doi:10.1145/3411276.3412204

[12] ChameleonCloud. 2023. python-chi. https://python-chi.readthedocs.io/en/latest/
[Online; accessed 20-December-2023].

[13] Khushi Choudhary, Nona Nersisyan, Edward Lin, Shobana Chandrasekaran, Rajiv
Mayani, Loïc Pottier, Angela P. Murillo, Nicole K. Virdone, Kerk Kee, and Ewa
Deelman. 2022. Application of Edge-to-Cloud Methods Toward Deep Learning.
In 2022 IEEE 18th International Conference on e-Science (e-Science). IEEE, Salt Lake
City, UT, USA, 415–416. doi:10.1109/eScience55777.2022.00065

[14] Markus Dillinger, Kambiz Madani, and Nancy Alonistioti. 2005. Software defined
radio: Architectures, systems and functions. John Wiley & Sons, Hoboken, NJ.

[15] donkeycar. 2023. donkeycar. https://docs.donkeycar.com/ [Online; accessed
21-December-2023].

[16] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The
design and operation of cloudlab. In Proceedings of the 2019 USENIX Conference
on Usenix Annual Technical Conference (Renton, WA, USA) (USENIX ATC ’19).
USENIX Association, USA, 1–14.

[17] Alicia Esquivel Morel. 2023. Chameleon Trovi Artifact: AutoLearn - Learning in
the Edge to Cloud Continuum. https://www.chameleoncloud.org/experiment/
share/8800ebd1-411e-4e94-9b62-6883f09188e7/version/2023-07-12

[18] Alicia Esquivel Morel, William Fowler, Kate Keahey, Kyle Zheng, Michael Sher-
man, and Richard Anderson. 2023. AutoLearn: Learning in the Edge to Cloud
Continuum. In Proceedings of the SC ’23 Workshops of the International Conference
on High Performance Computing, Network, Storage, and Analysis (Denver, CO,
USA) (SC-W ’23). Association for Computing Machinery, New York, NY, USA,
350–356. doi:10.1145/3624062.3624101

[19] OpenInfra Foundation. 2023. OpenStack. https://www.openstack.org/

[20] William Fowler, Kate Keahey, and A Esquivel Morel. 2023. Road to reliability:
Optimizing self-driving consistency with real-time speed data. In ACM Student
Research Competition Posters Display (SC’23 Poster). IEEE Press, Denver, CO, USA.

[21] Akram Hakiri, Sadok Ben Yahia, and S Gokhale Aniruddha. 2023. Hyper-5G:
A Cross-Atlantic Digital Twin Testbed for Next Generation 5G IoT Networks
and Beyond. In 2023 IEEE 26th International Symposium on Real-Time Distributed
Computing (ISORC). 230–235. doi:10.1109/ISORC58943.2023.00041

[22] David Y. Hancock, Jeremy Fischer, John Michael Lowe, Winona Snapp-Childs,
Marlon Pierce, Suresh Marru, J. Eric Coulter, Matthew Vaughn, Brian Beck, Nirav
Merchant, Edwin Skidmore, and Gwen Jacobs. 2021. Jetstream2: Accelerating
Cloud Computing via Jetstream. In Practice and Experience in Advanced Research
Computing (Boston, MA, USA) (PEARC ’21). Association for Computing Machin-
ery, New York, NY, USA, Article 11, 8 pages. doi:10.1145/3437359.3465565

[23] Kate Keahey, Jason Anderson, Michael Sherman, Zhuo Zhen, Mark Powers, Isabel
Brunkan, and Adam Cooper. 2021. Chameleon@Edge Community Workshop
Report. doi:10.5281/zenodo.5777344

[24] Kate Keahey, JasonAnderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione,
Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock, Joe Mambretti,
Alexander Barnes, François Halbach, Alex Rocha, and Joe Stubbs. 2020. Lessons
learned from the Chameleon testbed. In Proceedings of the 2020 USENIX Conference
on Usenix Annual Technical Conference (USENIX ATC’20). USENIX Association,
USA, Article 15, 15 pages.

[25] Kate Keahey and Ewa Deelman. 2020. The Silver Lining. IEEE Internet Computing
24 (7 2020), 55–59. Issue 4. doi:10.1109/MIC.2020.3013361

[26] Kate Keahey, Nick Feamster, Guilherme Martins, Mark Powers, Marc Richardson,
Alexis Schrubbe, and Michael Sherman. 2023. Discovery Testbed: An Observa-
tional Instrument for Broadband Research. In 2023 IEEE 19th International Confer-
ence on e-Science (e-Science). IEEE, 1–4. doi:10.1109/e-Science58273.2023.10254876

[27] Kate Keahey, Pierre Riteau, Jason Anderson, and Zhuo Zhen. 2019. Manag-
ing Allocatable Resources. In 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD). IEEE, 41–49. doi:10.1109/CLOUD.2019.00019

[28] Kate Keahey, Pierre Riteau, Dan Stanzione, Tim Cockerill, Joe Mambretti, Paul
Rad, and Paul Ruth. 2019. Chameleon: A Scalable Production Testbed for Com-
puter Science Research. Contemporary High Performance Computing (7 2019),
123–148. doi:10.1201/9781351036863-5

[29] Vuk Marojevic, Ismail Guvenc, Rudra Dutta, Mihail L Sichitiu, and Brian A Floyd.
2020. Advanced Wireless for Unmanned Aerial Systems: 5G Standardization,
Research Challenges, and AERPAW Architecture. IEEE Vehicular Technology
Magazine 15 (2020), 22–30. Issue 2. doi:10.1109/MVT.2020.2979494

[30] Rick McGeer, Mark Berman, Chip Elliott, and Robert Ricci. 2018. The GENI Book
(1st ed.). Springer Publishing Company, Incorporated.

[31] "mender.io". 2023. Mender.io: Over-the-Air Software Updates for IoT Devices.
https://mender.io/ [Online; accessed 20-December-2023].

[32] Microsoft. 2023. Azure IoT Edge. https://azure.microsoft.com/en-us/products/iot-
edge [Online; accessed 21-December-2023].

[33] Samie Mostafavi, Vishnu Narayanan Moothedath, Stefan Ronngren, Neelabhro
Roy, Gourav Prateek Sharma, Sangwon Seo, Manuel Olguin Munoz, and James
Gross. 2024. ExPECA: An Experimental Platform for Trustworthy Edge Com-
puting Applications. In Proceedings of the Eighth ACM/IEEE Symposium on Edge
Computing (Wilmington, DE, USA) (SEC ’23). Association for Computing Ma-
chinery, New York, NY, USA, 294–299. doi:10.1145/3583740.3626819

[34] ZackMurry, Alicia Esquivel Morel, and Kate Keahey. 2024. 5G in Practice: Measur-
ing Emerging Wireless Technology in Rural Iowa for Edge Devices in Distributed
Computation Workloads. In ACM Student Research Competition Posters Display
(SC’24 Poster).

[35] Ahmed Nasrallah, Akhilesh S. Thyagaturu, Ziyad Alharbi, Cuixiang Wang, Xing
Shao, Martin Reisslein, and Hesham ElBakoury. 2019. Ultra-low latency (ULL)
networks: The IEEE TSN and IETF DetNet standards and related 5G Ull research.
IEEE Communications Surveys and Tutorials 21 (2019). Issue 1. doi:10.1109/COMST.
2018.2869350

[36] "Openstack". 2023. Openstack Zun. https://docs.openstack.org/zun/latest/ [On-
line; accessed 20-December-2023].

[37] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R.
Siracusa, H. Liu, and M. Singh. 2005. Overview of the ORBIT radio grid testbed
for evaluation of next-generation wireless network protocols. In IEEE Wireless
Communications and Networking Conference, 2005, Vol. 3. 1664–1669 Vol. 3. doi:10.
1109/WCNC.2005.1424763

[38] Dipankar Raychaudhuri, Ivan Seskar, Gil Zussman, Thanasis Korakis, Dan Kilper,
Tingjun Chen, Jakub Kolodziejski, Michael Sherman, Zoran Kostic, Xiaoxiong
Gu, Harish Krishnaswamy, Sumit Maheshwari, Panagiotis Skrimponis, and Craig
Gutterman. 2020. Challenge: COSMOS: A city-scale programmable testbed
for experimentation with advanced wireless. In Proceedings of the 26th Annual
International Conference on Mobile Computing and Networking (London, United
Kingdom) (MobiCom ’20). Association for Computing Machinery, New York, NY,
USA, Article 14, 13 pages. doi:10.1145/3372224.3380891

[39] Sage. 2023. SAGE: A Software-defined Sensor Network. https://sagecontinuum.
org/ [Online; accessed 21-December-2023].

https://doi.org/10.1109/WF-IoT.2015.7389098
https://aws.amazon.com/greengrass/
https://doi.org/10.1109/CLOUDCOM.2019.00032
https://doi.org/10.1145/3491418.3530770
https://github.com/fubarlabs/foocars
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/examples/terasort/package-summary.html
https://doi.org/10.1109/MIC.2019.2958545
https://www.balena.io/
https://docs.balena.io/reference/OS/customer-board-support/
https://docs.balena.io/reference/OS/customer-board-support/
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00036
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00036
https://doi.org/10.1145/3411276.3412204
https://python-chi.readthedocs.io/en/latest/
https://doi.org/10.1109/eScience55777.2022.00065
https://docs.donkeycar.com/
https://www.chameleoncloud.org/experiment/share/8800ebd1-411e-4e94-9b62-6883f09188e7/version/2023-07-12
https://www.chameleoncloud.org/experiment/share/8800ebd1-411e-4e94-9b62-6883f09188e7/version/2023-07-12
https://doi.org/10.1145/3624062.3624101
https://www.openstack.org/
https://doi.org/10.1109/ISORC58943.2023.00041
https://doi.org/10.1145/3437359.3465565
https://doi.org/10.5281/zenodo.5777344
https://doi.org/10.1109/MIC.2020.3013361
https://doi.org/10.1109/e-Science58273.2023.10254876
https://doi.org/10.1109/CLOUD.2019.00019
https://doi.org/10.1201/9781351036863-5
https://doi.org/10.1109/MVT.2020.2979494
https://mender.io/
https://azure.microsoft.com/en-us/products/iot-edge
https://azure.microsoft.com/en-us/products/iot-edge
https://doi.org/10.1145/3583740.3626819
https://doi.org/10.1109/COMST.2018.2869350
https://doi.org/10.1109/COMST.2018.2869350
https://docs.openstack.org/zun/latest/
https://doi.org/10.1109/WCNC.2005.1424763
https://doi.org/10.1109/WCNC.2005.1424763
https://doi.org/10.1145/3372224.3380891
https://sagecontinuum.org/
https://sagecontinuum.org/


PEARC ’25, July 20–24, 2025, Columbus, OH, USA Keahey et al.

[40] Gonzalo De La Torre, Paul Rad, and Kim-Kwang Raymond Choo. 2020. Driverless
vehicle security: Challenges and future research opportunities. Future Generation
Computer Systems 108 (7 2020), 1092–1111. doi:10.1016/j.future.2017.12.041

[41] Jonathan Tsen, Jason Anderson, Leonardo Bobadilla, and Kate Keahey. 2021. One
fish two fish: Choosing optimal edge topologies for real-time autonomous fish
surveys. In ACM Student Research Competition Posters Display (SC’21 Poster). IEEE
Press, St. Louis, MO, USA.

[42] Rich Wolski, Chandra Krintz, Fatih Bakir, Gareth George, and Wei-Tsung Lin.
2019. CSPOT: portable, multi-scale functions-as-a-service for IoT. In Proceedings
of the 4th ACM/IEEE Symposium on Edge Computing (Arlington, Virginia) (SEC
’19). Association for Computing Machinery, New York, NY, USA, 236–249. doi:10.
1145/3318216.3363314

[43] Hongwei Zhang, Yong Guan, Ahmed Kamal, Daji Qiao, Mai Zheng, Anish Arora,
Ozdal Boyraz, Brian Cox, Thomas Daniels, Matthew Darr, Doug Jacobson, Ashfaq
Khokhar, Sang Kim, James Koltes, Jia Liu, Mike Luby, Larysa Nadolny, Joshua
Peschel, Patrick Schnable, Anuj Sharma, Arun Somani, and Lie Tang. 2021.
ARA: A Wireless Living Lab Vision for Smart and Connected Rural Communi-
ties. In Proceedings of the 15th ACM Workshop on Wireless Network Testbeds,
Experimental Evaluation & CHaracterization (New Orleans, LA, USA) (WiN-
TECH ’21). Association for Computing Machinery, New York, NY, USA, 9–16.
doi:10.1145/3477086.3480837

[44] Kyle Zheng, Kate Keahey, and Alicia Esquivel Morel. 2023. Chasing Clouds with
Donkeycar: Holistic Exploration of Edge and Cloud Inferencing Trade-Offs in E2E
Self-Driving Cars. In ACM Student Research Competition Posters Display (SC’23
Poster). IEEE Press, Denver, CO, USA.

https://doi.org/10.1016/j.future.2017.12.041
https://doi.org/10.1145/3318216.3363314
https://doi.org/10.1145/3318216.3363314
https://doi.org/10.1145/3477086.3480837

	Abstract
	1 Introduction
	2 The Core Chameleon Infrastructure
	3 Requirements: the Shape of an Edge Testbed
	4 Architecture
	5 Implementation
	6 CHI@Edge Use for Education and Research
	6.1 AutoLearn
	6.2 5G in Practice

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

