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? e With the 80% of 550,000 records input of training data and 96 hidden
units with a Sigmoid activation function, the ELM model accuracy
_ obtained was 92%. This was measured using R? score.
-y e Fig. 3 and Fig. 4 show the comparison between testing measured
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=> Why is weather prediction on the edge important?
€ This approach provides a cost-effective, scalable solution for
monitoring and predicting hazardous atmospheric conditions in real
time. o
€ Low atmospheric pressures (<1000 millibar) can be malignant weather ‘
for humans [2].
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€ Use of machine learning based applications on the edge are growing 5; i it DL U P kL
to address various use cases including weather prediction. Pressure (loc. 2)
‘ V\(G _are eXtendmg prior work by using ar? EL_M mOd_eI Implemented Figure 1. Comprehensive End-to-End Pipeline for ELM Model Training deployed on IBIS up to Visualization -
within IBIS [1] to detect weather anomalies in real-time.
Data Ingestion: Historical pressure data from 2 sensors & wind speed data from 1
=> Our methodology: sensor via InfluxDB is correlated on standard timestamp using Pandas. This results in
& Data from InfluxDB, encompassing pressure and wind sensor training and testing data. | - | |
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reCOrdS’ achlevmg a 92% R* score. Figure 3. Time Series Plot for the Predicted Pressure Figure 4. Time Series Plot for the Measured Pressure

€ The real-time implementation within IBIS demonstrates effective at Location 1 over Time (y: millibar / x: Unix timestamp) (loc. 1) over Time (y: millibar / x: Unix timestamp)

anomaly detection, with results visualized via Grafana. FILM Inference on |B|S
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-> EXtreme Learning MaChine (ELM)! intrOduced by Huang et al' [3] | m 12400 14;00 16:00 18:00 20:00 22:00 00:00 02:00
in 2006, is noted for its fast learning, easy implementation, good ? ELM Model Time (sec)
QeneraﬁzatiOn with limited data! and SUitabi”ty for real-time anaIySiS- Wind Spéed (loc. 1) l o - ; t Figure 5. Time Series Plot for the Predicted Pressure at Location 1 over Time (y: millibar / x: Unix time stamp)
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-> Unlike feed-forward neural networks (FFN), ELM, eliminates NES Reatime data i | e The next step is to replace InfluxDB with a data pipeline from the 2
multiple iterations, using a single learning step. Instead of | ! St viewaliation Raspberry Pis, which are connected to the 3 sensors, directly to our ELM
gradient-based back-propagation, ELM uses the Moore-Penrose Prassurs (loc. 2) BGrafana | pressure prediction program which already exists on the edge.

iInverse of the hidden layer output matrix.
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