
Three Pillars of Practical Reproducibility
Kate Keahey∗, Jason Anderson†, Mark Powers†, Adam Cooper†

∗ Argonne National Laboratory
Lemont, United States of America

Email: keahey@mcs.anl.gov
† University of Chicago

Chicago, United States of America

Abstract—Practical reproducibility is the ability to reproduce
results is a manner that is cost-effective enough to become a
vehicle of mainstream scientific exploration. Since computational
research artifacts usually require some form of computing to
interpret, open and programmable infrastructure, such as a range
of NSF-supported testbeds spanning infrastructure from datacen-
ter through networks to wireless systems, is a necessary – but not
sufficient – requirement for reproducibility. The question arises
what other services and tools should build on the availability of
such programmable infrastructure to foster the development and
sharing of findable, accessible, integrated, and reusable (FAIR)
experiments that underpin practical reproducibility. In this
paper, we propose three such services addressing the problems
of packaging for reuse, findability, and accessibility, respectively.
We describe how we developed these services in Chameleon, an
NSF-funded testbed for computer science research which has
supported the research of a community of 8,000+ users, and
discuss their strengths and limitations.

Index Terms—reproducibility, infrastructure, scientific plat-
forms, resource management

I. INTRODUCTION

There is a broad agreement that in the digital age science
should be shared digitally, through artifacts such as code
and data, and that adopting practices enabling or facilitating
reproducibility of computational results can lead to more
robust science and increased scientific productivity [1]–[4].
To support this consensus, the computer science community
supports activities such as artifact evaluation at conferences,
data preservation initiatives, and reproducibility hackathons
[5], [6], and sponsors incentives such as reproducibility badges
awarded by major computing organizations [7], [8]. But de-
spite all these efforts it is not clear how much science gets
reproduced beyond those targeted initiatives, as part of indi-
vidual quest for knowledge. We argue that unless reproducing
research becomes as vital and mainstream part of scientific
exploration as reading papers is today, reproducibility will be
hard to sustain in the long term because the incentives to
make research results reproducible won’t outweigh the still
considerable costs of making them so. Thus, in addition to
seeking ways to ensure that every experiment can be repeated
regardless of the effort, we should also explore mechanisms
for practical reproducibility, i.e., a practice where many – or
even most – experiments or results are packaged in such a
way that they can be repeated cost-effectively.

In a research ecosystem that supports practical reproducibil-
ity, scientists could “click through” results presented in a

paper, reproduce the experiment that yielded them or redo the
data analysis to try it on different hardware, introduce variation
into the algorithm and provide a side-by-side comparison, or
answer new questions with the available data. This mode of
exploration means that rather than just reading about new
research, a scientist is exploring science interactively and can
immediately verify or challenge new results, extend them
on-the-fly by inserting new ideas, or more easily integrate
new research into teaching, thus accelerating evolution of
curricula to keep up with advancing science. Furthermore,
going beyond sharing results through papers, scientists could
access experiments – representing electronic packaging of
results – directly through a digital hub, similarly to how they
might look for relevant papers in the ACM Digital Library [9]
today. Such direct access to reproducible experiments could
be an effective method not just for sharing results themselves,
but also for exploring the means via which they were obtained,
i.e., the experimental methodology, or ways in which the
experimental data were analyzed – placing more emphasis and
stimulating more discussion of different aspects of scientific
exploration. This kind of dissemination of research has the
potential to invert the role of papers and results and make the
papers indeed “an advertisement for scholarship” [10].

Such research ecosystem may be more readily within reach
than it currently appears, as its underpinnings are already
present. In [11] we note the enabling power of two factors.
The first one is the availability of resources through open
platforms or clouds with unique hardware and configurations
on which research can be readily re-played. An open platform
means that all investigators have equal access to the same
experimental hardware, no matter how rare or expensive; thus,
it is no longer the case that “I can do my research because I
have a GPU cluster – but you can’t reproduce it, because you
don’t”. The second factor is the platform’s programmability,
i.e., the ability to establish an arbitrarily complex experimental
environment in programmatic ways, that can be saved and then
replayed many times. To support computer science experimen-
tation in particular, the National Science Foundation (NSF)
has created a collection of open, programmable experimen-
tal platforms – Chameleon, CloudLab, FABRIC, COSMOS,
POWDER, AERPAW, and ARA [12]–[18]. Supplemented by
commercial cloud resources openly available via NSF-funded
CloudBank [19], these platforms can collectively support
most computer science experiments ranging from topics in



performance variability, operating systems, or networking, to
machine learning, artificial intelligence, and robotics research.

However, while open platforms and programmability create
an opportunity, they don’t offer a complete solution. To
illustrate: over the years of operating Chameleon [12] – a bare
metal reconfigurable platform which to date has supported a
community of over 8,000 users working on over 1,000 research
and education projects – we noted that experimenters using the
testbed created thousands of digital artifacts. Those artifacts –
images, orchestration templates, and digital notebooks – were
created entirely as a side-effect of using the platform, i.e., with
no special effort made towards reproducibility. At the same
time, they represent experimental environments that supported
research on Chameleon, and could be used to re-establish such
environments – often the most complex step in reproducing a
computer science experiment. This is a treasure trove of digital
content – most of it publicly available – that should in principle
significantly improve potential for interactive science – but it
does not. There are several reasons for this: those artifacts
represents only part of an experiment and are not much use
without the other parts; despite being publicly available they
can be very hard to find; there are no incentives to keep
them current; potential “consumers” of this content simply
lack access to hardware, content, or both. To remedy this
situation, we sought to create services, tools, and processes
that would help our users make their research more shareable;
the proposals shared below are a result of these efforts.

In this paper, we make the case that in order to support
practical reproducibility we need to support findable, accessi-
ble, integrated, and reusable (FAIR) experiments, represented
as a combination of hardware, experimental environment,
experiment body, and data analysis components. Further, we
also argue, that no one tool, but an ecosystem of integrated
tools is needed to create progress in providing a practical
reproducibility platform, and propose three infrastructure-
related capabilities fundamental to the support of practical
reproducibility: (1) an effective method of packaging for reuse
that associates access to hardware with the digital representa-
tion of an experiment (a ”compute capsule”); in as much as
possible such method should be a side-effect of developing
an experiment, (2) providing ways of sharing and finding
packaged experiments integrated with platforms on which
they can be executed, and (3) supporting access to platforms
specifically for reproducibility purposes, potentially outside of
regular policies. Our viewpoint is naturally informed by the
experience of operating a testbed; we therefore present specific
proposals for these integrated tools, explain how interacting
with our community shaped our development decisions, and
explain how they were implemented in Chameleon.

II. EXPERIMENTS AND EXPERIMENTERS

As operators of Chameleon [12], an NSF-funded exper-
imental infrastructure for computer science research , our
perspective is informed primarily by the need of computer
science experiments; therefore the needs of those experiments
specifically define the scope of this paper. This means that we

explore many particularly challenging computational scenarios
– but at the same time may de-emphasize common experimen-
tal patterns and needs present in other sciences.

In general, these types of experiments can usually be seen
as composed of three parts: (1) the creation of experimental
environment or topology: the allocation, configuration, and
orchestration of resources in which the experiment will execute
(e.g., ”create Linux cluster with a distributed storage system”),
(2) experiment body, i.e., the actual execution of experimental
actions (e.g., benchmarking the created environment), and (3)
data analysis and presentation. Experiments may emphasize
or de-emphasize some of those stages; for example, they
may skip the creation of an experimental environment if e.g.,
the objective is to discover new properties of existing envi-
ronments (e.g., a specific datacenter configuration). Further,
reproducing the experiment may involve reproducing all of
those stages, or only one of them: for example, a reviewer
may be interested in repeating the data analysis without re-
playing the whole experiment. Similarly, variation can also
be introduced at different stages, by e.g., re-running the same
experiment in different experimental environments.

Reproducing experiments is primarily a dialogue between
experiment authors, who create experiments and may package
them for reproducibility, and experiment reviewers, who at-
tempt to reproduce those experiments. We note that scientists
taking on those different roles have different perspectives and
motivations, and argue that to provide effective support for
reproducibility we need to develop infrastructure, services, and
tools that take those motivations into account and align them
to the extent possible. We discuss these factors in explaining
our design decisions and explain how they influenced our
approach.

III. PACKAGING FOR INTEGRATION AND REUSE

From the perspective of an experiment reviewer, the com-
pleteness of packaging (i.e., availability of all the pre-
conditions for reproduction ) is of course the necessary con-
dition for reproducibility of an experiment – but it is not
sufficient from the perspective of practical reproducibility:
the time to reproduce could still be prohibitive or uncertain.
This factor led to the creation of tools streamlining the
establishment of experimental environments – often the most
complex stage of an experiment setup – so that they can be
re-run as much as possible “with one click” [20]–[22]. Many
such efforts focus on declarative packaging, i.e., describing a
desired state/outcome rather than ways to achieve it, expressed
via orchestration templates or experiment profiles [13], [23]–
[25]. In practice this is often impractical as the same state
can be achieved via different means – that are associated
with different interpretations of the desired state, or different
side-effects – and thus not always yielding consistent results.
In addition, this approach is by nature transactional (i.e.,
the state is not reached until the orchestration transaction
is finished); this makes it difficult to inject variation to an
experiment or handle natural variation in the platform (e.g.,
temporary unavailability of some resources). We find that for



this reason experiment reviewers prefer experiments expressed
in imperative and non-transactional style, where the reviewer
can build up to the desired experimental environment state
gradually, addressing issues or trying new approaches as they
go. Last but not least, a critical requirement for the experiment
reviewer is that all the artifacts pertaining to experimentation –
images, deployment configuration, experiment code, analysis,
as well as the argument that it supports – are connected and
integrated in a way that allows the reviewer to not only grasp
the relationships between them, but manage those relationships
easily (e.g., deploy the same image on a different hardware
configuration), and follow the way the experiment supports
the argument with which it is associated.

These considerations are of less direct importance to the
experiment author, who may care about them as a way of
ultimately achieving impact, but whose direct attention is more
likely to be focused on the cost of packaging an experiment –
in particular, as the time spent on it diverts resources from new
research. In other words, from the author’s perspective it is
critical that packaging an experiment is as cheap as possible,
preferably a side-effect of experimentation itself – and with
cost of reproduction being only a secondary consideration.

We explored two approaches of packaging experiments as
a side-effect of experimentation: (1) monitoring the events
an experiment generates on the testbed and then using pro-
grammatic methods to reconstruct those events and the result-
ing experimental environment, and (2) aligning experimental
methodology and reproducibility so that the most convenient
tools to package experiments happen to be the same ones as
to develop them in the first place. We explored the former
in [26] where we instrumented Chameleon to monitor user’s
actions; presented a summary of those actions to the user
(experiment precis); and then attempted to generate an orches-
tration template to reproduce the same state. The results were
mixed: while it was possible to get good results in relatively
simple cases, it was hard to ensure correctness in the general
case. Given however that many of our users already used
a programmatic approach to creating complex experimental
environments, either via imperative or declarative methods
(CLI/python-chi [27] or Heat templates [23], respectively),
we turned our attention to adapting them to packaging ex-
periments. Specifically, we looked for an imperative, non-
transactional approach that would also provide an integration
of the various experimental artifacts, experiment components,
and tie the experiment to analysis and results presented in the
paper. We noticed that our users increasingly use Jupyter to
program different stages of their experiments, and leverage
the combination of programmability of the bash and python
kernels with analysis expressed in text and images. However,
from the perspective of complex experimentation Jupyter had
one shortcoming: the code executed in a Docker container
– not sufficient to users who typically need complex and
distributed experimental environments. To remedy this, we
decided to provide a Jupyter interface to the testbed so that
users could use Jupyter to create experimental environments
as well as use it for the experiment body and data analysis.

The resulting Jupyter interface to Chameleon allows users to
establish a secure session to the testbed by logging in through
Chameleon’s JupyterHub. From the user’s perspective, this has
a few advantages: the programmatic interface to the testbed
(now through the bash and python Jupyter kernels) becomes
much richer by leveraging the integration of text, programs,
and visualization elements supported by Jupyter; the user’s
credentials are implicit in Jupyter cells allowing the user direct
access to the testbed for programmatic creation of complex
experimental environments, more powerful than the Docker
containers that typically serve as a back-end for Jupyter
computation; and since there is no explicit authentication
step, there is no need for the notebook to include secrets
so that it can be shared more easily. Further, in order to
support programming the body of the experiment (as well as
the experimental container) from Jupyter we have configured
a Chameleon image with a bare bones JupyterLab server;
users can deploy it, and use it to program the body of their
experiment as well as the resulting analysis.

To implement this integration we used the “Zero to Jupyter-
Hub on Kubernetes” deployment of JupyterHub [28]; it spawns
per-user instances of JupyterLab with minimal allocation of
resources, as its intended usage is for orchestration of testbed
resources rather than direct computation. The JupyterLab envi-
ronment comes with OpenStack [29] command line interface
(CLI) (the CHameleon Infrastructure (CHI) builds on top of
OpenStack) and python software development kits (SDK)s
installed, along with Chameleon’s python SDK (python-chi).
To create a seamless interface, we authenticate JupyterHub
users to our central OAuth Keycloak server [30] and then
use the OAuth token granted by the JupyterHub authenticator
to authenticate the user to all Chameleon sites. This token,
along with other relevant user information, is loaded into
environment variables when the user spawns a JupyterLab
instance, and is automatically read by OpenStack’s CLI and
SDK as well as python-chi. We have implemented a periodic
check for OAuth token expiration, which refreshes the user’s
session in the background.

To facilitate the transition between the creation of an experi-
mental environment and the execution of the experiment body
inside the JupyterLab environment, we also create an SSH
key for the user; this key is placed on all OpenStack instances
created with python-chi. This allows users to connect to any
resources they deploy and run commands over SSH to upload
data and execute experiments on the deployed instances (in
a sense, any experiment body command becomes “wrapped”
by SSH). Some users prefer to execute the experiment body
and/or the analysis part of the experiment on remote resources
directly from a Jupyter notebook. To support this, we provide
methods to install and run a bare bones Jupyter server on
the remote instance via SSH and create a tunnel from the
user’s local machine to this new Jupyter server; this allows
the user to execute the body of the experiment by running the
kernels directly on the created cloud instances. Neither method
provides a completely seamless experience and devising better
ways of relating experimental containers to experiment body



and analysis is one of the open questions of an ecosystem for
reproducibility.

IV. FINDABLE VIA TROVI

The principal challenge of sharing digital artifacts rests
in the nature of their readability: we are all well-equipped
to read papers and require no additional infrastructure to
interpret them, whereas data, code, and other digital artifacts
generally require computation, visualization or other means
of digital interpretation. Support requirements for a digital
artifacts repository are therefore analogous to a library that
has a microfilm collection: in addition the artifacts themselves,
such library might also provide a microfilm reader as a means
of interpretation. Similarly, having a digital artifact, even one
that is complete, integrated, otherwise ready to reproduce, is
but half the battle. The lack of hardware to reproduce it on –
especially in computer science where so many experiments
rely on novel, specialized, or even simply just sufficiently
powerful hardware – often means that reproducing an ex-
periment in practice is impossible. Platforms like Google
Collab [31] and CodeOcean [32] recognize this and associate
hardware with computation, but have significant limitations:
they are restricted to a specific platform or a small set of
platforms, have ceilings on use, and a relatively narrow range
of capabilities, generally limited to execution on a single node
rather than complex experimental environments.

We argue that to provide an effective hub for executable
experiments, a service should provide open APIs that would
enable integration with multiple open testbeds/clouds and thus
support many different types of experiments on multiple plat-
forms. Further, a sharing hub of this type should also be well
positioned to propose measures of impact, a critical incentive
that creates a bridge between the interests of the experiment
authors and reviewers. This can be done by connecting to the
existing publishing and incentive structures, e.g., making digi-
tal artifacts citable via assigning them digital object identifiers
(DOIs), or by providing its own by supporting e.g., metrics
of how much a specific artifact was executed. In addition,
a service of this kind should of course also provide all the
features that allow users to effectively index and discover
experiments.

We implemented a service, called Trovi (from Esperanto
“find”), that allows users to share artifacts packaged as Jupyter
notebooks integrated with open platforms. Trovi is not a part
of Chameleon, but rather a general-purpose service that is
designed to ulitmately connect to many platforms via open API
(see below). An experiment author can add an artifact to Trovi
for public availability or limited sharing and index it by using
appropriate keywords. Once the artifact is in Trovi, the author
can create new versions or otherwise edit the artifact metadata.
Users can create versions by uploading file archives or by
importing from a supported storage backend, such as a public
Git repository. Once an experiment is ready for publication,
it can be published to Zenodo [33] which assigns it a DOI
allowing the user to reference the experiment as a first-class
entity. Experiment reviewers search for relevant Trovi artifacts,

and once they find experiments of interest, they can inspect
them and interact with them by clicking on a launch button
that supports seamless execution of the associated notebook
on an integrated platform.

To support this last feature effectively, Trovi exposes an
open API [34] allowing the system to support different back-
end implementations (experiment storage), connect to different
platforms, and support different front-end implementations
(experiment presentation and search). The back-end API, im-
plemented in Chameleon Swift [35], Zenodo [33], and GitHub
[36], fetches artifact retrieval metadata (rather than content
itself), and then uses implementation-specific ways of fetching
content. For example, an artifact version stored in Git provides
information about the Git remote URL and protocol, while one
stored in Chameleon’s object store will provide a temporary
HTTP archive URL.

This content retrieval data is passed into a JupyterLab
“startup hook” (i.e., an import handler that we implemented
with JupyterLab and JupyterHub extensions) which, when run,
fetches the artifact’s contents and loads them into the user’s
working directory. This allows a user to click on the “Launch”
button and be taken to a Jupyter environment with the artifact’s
contents loaded into the working directory. To connect to
different platforms, Trovi’s API effectively exchanges a valid
OAuth token from an approved platform, such as Chameleon,
for a Trovi bearer token, which must be included with testbed
API calls which require authentication; this allows a user to
use multiple platforms from the same notebook (via platform-
specific interfaces).

Lastly, the front-end API represents an implementation that
allows users to view and manage artifacts represented as
Jupyter notebooks. This front-end implementation is currently
surfaced as a web page in the Chameleon portal for conve-
nience, though we anticipate it to be eventually replaced by
an independent implementation. Each Jupyter notebook has
an integrated “Launch” button supported by the JupyterHub
extension described above. This extension also reports when
a user executes a cell from an artifact – a functionality that
allows us to keep track of the number of times an artifact
was executed at least partially (we also keep track of artifact
views). While this is not a perfect measure of impact, it is
a useful approximation, as it helps align the incentives of
experiment authors with those of experiment reviewers.

V. ACCESSIBLE VIA CHAMELEON DAYPASS

Even open platforms typically place some restrictions on
their usage; for example, an open research platform might
disallow commercial use. Further, platform use is often as-
sociated with some kind of allocation, or explicit payment in
the case of commercial clouds – resources that an experiment
reviewer may be unwilling to commit. These factors create a
potential barrier to practical reproducibility on the experiment
reviewer side: even experiments that are packaged for reuse,
integrated, and findable may not be accessible.

One proposal to overcome this challenge is to give exper-
iment authors limited allocation to explicitly support repro-



ducibility of their experiments: we piloted this capability in
Chameleon by implementing Chameleon Daypass. Experiment
authors can request an allocation for 10 experiment executions
of 1000 allocation units (rough default numbers determined
by the requirements of the current pilot) by providing a
brief justification. Once the allocation is granted, the author’s
experiment in Trovi exposes an additional interface allowing
users to request a reproducibility allocation for this specific ex-
periment – and the author can now advertise their experiment
as available via links associated with experiment description in
the paper, QR code on a poster, or otherwise linking traditional
and digital artifacts.

When an experiment reviewer requests a reproducibility
allocation, the request sends an email notification to the
experiment author who reviews and potentially grants the
request. Once the request is granted, the system generates
another email, notifying the experiment reviewer that their
Daypass was approved, and inviting the user to join the
project by clicking on a link. When the user is added to the
daypass allocation, the system notes the time the invitation
was accepted. A periodic task checks all active reproducibility
allocations: if any accepted daypass invitations exceed the
reproducibility allocation time specified by the experiment
author, we automatically remove the user from the alloca-
tion. The current implementation keeps track of invitations
and Daypass allocations in Chameleon’s portal and thus its
enforcement is reliant entirely on allocation limits.

VI. DISCUSSION AND OPEN CHALLENGES

In this paper, we argue that a compute capsule combining
experiment enactment with hardware on which it can be exe-
cuted is necessary – but not sufficient – to achieving practical
reproducibility for computer science experiments. A key com-
ponent removing friction from reproducing experiments is how
these elements are combined, i.e., how integrated, findable,
and accessible experiemnts are in practice. Experiences gained
in operating Chameleon indicate that not one service but an
ecosystem of services each supporting a specific aspect of
FAIR experimentation is needed to achieve a “critical mass”
of reproducibility.

Our approach to packaging fulfills the critical requirement
in that it ties hardware available via an open platform to
all three elements of an experiment: environment creation,
experiment body, and data analysis. This allows experiment
authors to ensure that experiment reviewers will find the
necessary resources to reproduce experiments. We encourage
the use of Jupyter notebooks, since many of our users use them
to structure experiments anyway; thus, a representation of an
experiment viable for practical reproducibility is effectively
created by side-effect. By integrating them with Chameleon
we allow users to extend their use over all three elements
of experiment described in Section II, from experimental
environment creation, to experiment body, and analysis. We
note however, that currently the transition between the creation
of an experimental environment and experiment body and

analysis is a challenge; we propose two methods of over-
coming it in our approach, but more seamless transitions can
be imagined. Structuring the relationship of an experimental
environment to experiment body and analysis stages in general
is an open problem and depends on how those environments
can be created.

Further, our approach to sharing experiments fulfills its
mission in that it further ties findable experiments to open
platforms on which they can be executed. While Jupyter is
a promising approach, different types of packaging may be
appropriate in different contexts or for different problems;
although our current implementation focuses on Jupyter, an
abstraction of experiment representation that could be executed
on different platforms would therefore make the system more
general. In addition, a closer integration of the system with
existing ecosystems of tools that already provide versioning
and serve as a repository of useful digital artifacts related to
experimentation (e.g., GitHub or Zenodo) would also improve
user experience.

The biggest set of open challenges in developing an ecosys-
tem for practical reproducibility however deals with com-
munity interaction with the process. A significant issue in
this space is that of incentives as they create an alignment
between the interests of experiment authors and reviewers:
while experiment authors themselves may not be interested in
ease of replication directly, they will become interested if we
can tie it to the impact of their research. From this perspective,
one-time acknowledgement such as reproducibility badges are
limited as they do not provide the kind of differentiated recog-
nition that is available via e.g., citation counts (themselves an
imperfect measure). Our approach to addressing this problem
is to provide metrics of Jupyter notebook views and execution
counts (of at least one code cell) on viable platforms for a
given experiment; while not a perfect indicator, it does give an
idea of an artifact’s popularity. Another potential approach is
the integration of ongoing open reviews and comments into the
system – translating them into feedback is less instantaneous
than a numerical metric but could provide a good alternative
to use in conjunction. A related issue is that of sustaining the
artifacts: software and thus experiments needs upgrades and
updates (e.g., to keep up with security vulnerabilities), and thus
the ability to maintain a FAIR experiment in some form. Ex-
periment authors are not always willing or able to support the
experiments; one possible way to resolve this problem is via
community collaboration where interesting experiments could
be ”forked” as reviewers find ways to upgrade or otherwise
fix them, potentially borrowing policies and processes from
the open source community. This in itself could provide a
measure of impact, as maintained (and therefore clearly used)
experiments would likely see enough attention to keep them
current.

Lastly, our pilot solution for accessibility provides limited
enforcement and relies strongly on the networking of re-
searchers sharing their experiments with others. This suggests
that some form of social network mechanisms could play a
useful role in both popularizing reproducibility and providing



a better incentive structure.

VII. CONCLUSIONS

Effectively supporting reproducibility in the digital age
requires rethinking and refining the current research shar-
ing ecosystem. Since computational research artifacts require
some form of computing – sometimes unique and rare – to
interpret, we argue that open infrastructure will play key role
in any such ecosystem. Further, we posit that an effective
sharing ecosystem will support not only reproducibility, but
practical reproducibility, where many artifacts will be not only
reproducible, but reproducible in a cost-effective manner so
that computational reproducibility can become a mainstream
vehicle of research sharing.

In this paper, we summarize our experiences of encouraging
reproducibility on the Chameleon testbed for computer science
research and propose three services that in our experience
are fundamental to the support of such ecosystem: packaging
experiments with the hardware on which they can be executing
(i.e., “compute capsules”), ways of sharing experiments that
tie them to the hardware, and explicitly supporting infras-
tructure access for reproducibility purposes. We describe how
we developed these services in Chameleon and discuss their
strengths and limitations.

ACKNOWLEDGEMENT

Results presented in this paper were obtained using the
Chameleon testbed supported by the National Science Foun-
dation. This material is based upon work supported by the
U.S. Department of Energy, Office of Science, under contract
number DE-AC02-06CH11357.

REFERENCES

[1] O. E. Gundersen, Y. Gil, and D. W. Aha, “On reproducible ai: Towards
reproducible research, open science, and digital scholarship in ai publi-
cations,” AI magazine, vol. 39, no. 3, pp. 56–68, 2018.

[2] M. S. Krafczyk, A. Shi, A. Bhaskar, D. Marinov, and V. Stodden,
“Learning from reproducing computational results: introducing three
principles and the reproduction package,” Philosophical Transactions
of the Royal Society A, vol. 379, no. 2197, p. 20200069, 2021.

[3] D. Rosendo, P. Silva, M. Simonin, A. Costan, and G. Antoniu, “E2clab:
Exploring the computing continuum through repeatable, replicable and
reproducible edge-to-cloud experiments,” in 2020 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 2020, pp. 176–
186.

[4] V. Stodden, M. McNutt, D. H. Bailey, E. Deelman, Y. Gil, B. Hanson,
M. A. Heroux, J. P. Ioannidis, and M. Taufer, “Enhancing reproducibility
for computational methods,” Science, vol. 354, no. 6317, pp. 1240–1241,
2016.

[5] J. Pineau, P. Vincent-Lamarre, K. Sinha, V. Larivière, A. Beygelzimer,
F. d’Alché Buc, E. Fox, and H. Larochelle, “Improving reproducibility in
machine learning research (a report from the neurips 2019 reproducibil-
ity program),” The Journal of Machine Learning Research, vol. 22, no. 1,
pp. 7459–7478, 2021.

[6] T. Malik, A. Vahldiek-Oberwagner, I. Jimenez, and C. Maltzahn, “Ex-
panding the scope of artifact evaluation at hpc conferences: Experience
of sc21,” in Proceedings of the 5th International Workshop on Practical
Reproducible Evaluation of Computer Systems, 2022, pp. 3–9.

[7] R. F. Boisvert, “Incentivizing reproducibility,” Communications of the
ACM, vol. 59, no. 10, pp. 5–5, 2016.

[8] A. C. Frery, L. Gomez, and A. C. Medeiros, “A badging system
for reproducibility and replicability in remote sensing research,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 13, pp. 4988–4995, 2020.

[9] “ACM Digital Library,” https://dl.acm.org/.
[10] D. L. Donoho, A. Maleki, I. U. Rahman, M. Shahram, and V. Stodden,

“Reproducible research in computational harmonic analysis,” Computing
in Science & Engineering, vol. 11, no. 1, pp. 8–18, 2008.

[11] K. Keahey, “The Silver Lining,” IEEE Internet Computing, vol. 24, no. 4,
pp. 55–59, 2020.

[12] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
H. Gunawi, C. Hammock, and M. Joe, “Lessons Learned from the
Chameleon Testbed,” in 2020 USENIX Annual Technical Conference
(USENIX ATC 20), 2020, pp. 219–233.

[13] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb et al., “The design and
operation of {CloudLab},” in 2019 USENIX annual technical conference
(USENIX ATC 19), 2019, pp. 1–14.

[14] I. Baldin, A. Nikolich, J. Griffioen, I. I. S. Monga, K.-C. Wang,
T. Lehman, and P. Ruth, “FABRIC: A National-scale Programmable Ex-
perimental Network Infrastructure,” IEEE Internet Computing, vol. 23,
no. 6, pp. 38–47, 2019.

[15] J. Yu, T. Chen, C. Gutterman, S. Zhu, G. Zussman, I. Seskar, and
D. Kilper, “COSMOS: Optical Architecture and Prototyping,” in Optical
Fiber Communication Conference. Optical Society of America, 2019,
pp. M3G–3.

[16] J. Breen, A. Buffmire, J. Duerig, K. Dutt, E. Eide, A. Ghosh, M. Hibler,
D. Johnson, S. K. Kasera, E. Lewis et al., “POWDER: Platform for Open
Wireless Data-driven Experimental Research,” Computer Networks, vol.
197, p. 108281, 2021.

[17] M. L. Sichitiu, I. Guvenc, R. Dutta, V. Marojevic, and B. Floyd, “AER-
PAW Emulation Overview,” in Proceedings of the 14th International
Workshop on Wireless Network Testbeds, Experimental evaluation &
Characterization, 2020, pp. 1–8.

[18] H. Zhang, Y. Guan, A. Kamal, D. Qiao, M. Zheng, A. Arora, O. Boyraz,
B. Cox, T. Daniels, M. Darr et al., “Ara: A wireless living lab vision
for smart and connected rural communities,” in Proceedings of the 15th
ACM Workshop on Wireless Network Testbeds, Experimental evaluation
& Characterization, 2022, pp. 9–16.

[19] M. Norman, V. Kellen, S. Smallen, B. DeMeulle, S. Strande, E. La-
zowska, N. Alterman, R. Fatland, S. Stone, A. Tan et al., “Cloudbank:
Managed services to simplify cloud access for computer science research
and education,” in Practice and Experience in Advanced Research
Computing, 2021, pp. 1–4.

[20] L. Sarzyniec, S. Badia, E. Jeanvoine, and L. Nussbaum, “Scalability
testing of the kadeploy cluster deployment system using virtual machines
on grid’5000,” in SCALE Challenge 2012, held in conjunction with
CCGrid’2012, 2012.

[21] I. Baldine, Y. Xin, A. Mandal, C. H. Renci, U.-C. J. Chase, V. Marupadi,
A. Yumerefendi, and D. Irwin, “Networked cloud orchestration: A geni
perspective,” in 2010 IEEE Globecom Workshops. IEEE, 2010, pp.
573–578.

[22] K. Keahey and T. Freeman, “Contextualization: Providing One-click
Virtual Clusters,” in 2008 IEEE Fourth International Conference on
eScience. IEEE, 2008, pp. 301–308.

[23] “OpenStack Heat,” https://docs.openstack.org/heat/latest/.
[24] “AWS CloudFormation,” https://aws.amazon.com/cloudformation/.
[25] “Terraform by HashiCorp,” https://www.terraform.io/.
[26] S. Wang, Z. Zhen, J. Anderson, and K. Keahey, “Reproducibility as

Side Effect,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC’18
Poster). IEEE Press, 2018.

[27] “python-chi,” https://python-chi.readthedocs.io/en/latest/.
[28] “Project Jupyter — JupyterHub,” https://jupyter.org/hub.
[29] “OpenStack,” https://www.openstack.org/.
[30] J. Anderson and K. Keahey, “Migrating towards single sign-on and

federated identity,” in Practice and Experience in Advanced Research
Computing, 2022, pp. 1–8.

[31] “Welcome to Colaboratory,” https://colab.research.google.com/.
[32] A. Clyburne-Sherin, X. Fei, and S. A. Green, “Computational repro-

ducibility via containers in social psychology,” Meta-Psychology, vol. 3,
2019.

[33] “Zenodo,” https://zenodo.org/.
[34] “Trovi,” https://chameleoncloud.gitbook.io/trovi/.
[35] “OpenStack Swift,” https://docs.openstack.org/swift/latest/.
[36] “GitHub,” https://github.com/.


