

www. chameleoncloud.org

CHAMELEON: TOWARDS AN EXPERIMENTAL INSTRUMENT FOR COMPUTER SCIENCE RESEARCH

Kate Keahey

Mathematics and CS Division, Argonne National Laboratory Computation Institute, University of Chicago keahey@anl.gov

DECEMBER 6, 2017

WHY DO WE NEED AN INSTRUMENT?

CHAMELEON IN A NUTSHELL

- Deeply reconfigurable: "As close as possible to having it in your lab"
 - Deep reconfigurability (bare metal) and isolation
 - Power on/off, reboot from custom kernel, serial console access, etc.
 - But also modest KVM cloud for ease of use
- ► Large-scale: "Big Data, Big Compute research"
 - ► Large-scale: ~650 nodes (~15,000 cores), 5 PB of storage distributed over 2 sites connected with 100G network...
 - ...and diverse: ARMs, Atoms, FPGAs, GPUs, etc.
- Blueprint for a sustainable production testbed: "cost-effective to deploy, operate, and enhance"
 - Powered by OpenStack with bare metal reconfiguration (Ironic)
- Open production testbed for Computer Science Research
 - Project started in 10/2014, testbed available since 07/2015
 - Just renewed for phase 2

EXISTING CHAMELEON HARDWARE

To UTSA, GENI, Future Partners

Switch Standard

Cloud Unit

42 compute

4 storage

x2

Core Services Front End and Data **Mover Nodes**

Chameleon Core Network

100Gbps uplink public network (each site)

504 x86 Compute Servers 48 Dist. Storage Servers 102 Heterogeneous Servers **16 Mgt and Storage Nodes**

> Chicago Austin

SCUs connect to core and fully connected to each other

Switch

Standard

Cloud Unit

42 compute

4 storage

x10

Core Services

3.6 PB Central File Systems, Front End and Data Movers

Heterogeneous **Cloud Units Alternate Processors**

and Networks

EXISTING CHAMELEON HARDWARE (DETAIL)

- "Start with large-scale homogenous partition"
 - ▶ 12 Standard Cloud Units (48 node racks)
 - Each rack has 42 Dell R630 compute servers, each with dual-socket Intel Haswell processors (24 cores) and 128GB of RAM
 - ► Each rack also has 4 Dell FX2 storage server (also Intel Haswells), each with a connected JBOD of 16 2TB drives (total of 128 TB per SCU)
 - ▶ Allocations can be an entire rack, multiple racks, nodes within a single rack or across racks (e.g., storage servers across racks forming a Hadoop cluster)
 - ▶ 48 port Force10 s6000 OpenFlow-enabled switches 10Gb to hosts, 40Gb uplinks to Chameleon core network
- ► Shared infrastructure
 - ▶ 3.6 PB global storage, 100Gb Internet connection between sites
- "Graft on heterogeneous features"
 - ► Infiniband with SR-IOV support netw in one rack
 - ► High-memory, NVMe, SSDs, GPUs (22 nodes), FPGAs (4 nodes)
 - ► ARM microservers (24) and Atom microservers (8), low-power Xeons (8)

CORE SUPPORT FOR EXPERIMENTAL WORKFLOW

configure and discover provision monitor interact resources resources - Fine-grained - Advance - Deeply - Hardware - Complete reconfigurable reservations & metrics - Up-to-date - Appliance on-demand - Fine-grained - Versioned information - Isolation catalog - Verifiable - Snapshotting - Fine-grained - Aggregate and allocations - Complex archive **Appliances** - Network Isolation

Powered by CHI = 65%*OpenStack + 10%*G5K + 25%*"special sauce"

CHI: DISCOVERING AND VERIFYING RESOURCES

- ▶ Fine-grained, up-to-date, and complete representation
- Testbed versioning
 - "What was the drive on the nodes I used 6 months ago?"
- Dynamically verifiable
 - ▶ Does reality correspond to description? (e.g., failure handling)
- Grid'5000 registry toolkit + Chameleon portal
 - Automated resource discovery (Ishw, hwloc, ethtool, etc.)
 - Scripted export to RM/Blazar
- ► G5K-checks
 - Can be run after boot, acquires information and compares it with resource catalog description

CHI: PROVISIONING RESOURCES

- Resource leases
- Advance reservations (AR) and on-demand
 - ► AR facilitates allocating at large scale
- Isolation between experiments
- ► Fine-grain allocation of a range of resources
 - Different node types, etc.

- Based on OpenStack Nova/Blazar
- ▶ Revived Blazar project (ex. Climate), part of core reviewer team
- Extended Horizon panel with calendar displays
- Added Chameleon usage policy enforcement

CHI: CONFIGURE AND INTERACT

- Deep reconfigurability: custom kernels, console access, etc.
- Snapshotting for saving your work
- Map multiple appliances to a lease
- ► Appliance Catalog and appliance management
- ► Handle complex appliances
 - ▶ Virtual clusters, cloud installations, etc.
- Support for network isolation
- ▶ OpenStack Ironic, Neutron, Glance, meta-data servers, and Heat
- Added snapshotting, appliance management and catalog, dynamic VLANs
- Not yet BIOS reconfiguration

CHI: INSTRUMENTATION AND MONITORING

- Enables users to understand what happens during the experiment
- ► Instrumentation metrics
- ► Types of monitoring:
 - ► Infrastructure monitoring (e.g., PDUs)
 - User resource monitoring
 - Custom user metrics
- Aggregation and Archival
- OpenStack Ceilometer + agents, standard metrics (CPU, memory, network, disk usage, etc.)
- ► RAPL interface to provide power and energy usage

CHAMELEON: TIMELINE AND STATUS

- ▶ 10/14: Project starts
- ▶04/15: Chameleon Core Technology Preview
- ▶06/15: Chameleon Early User on new hardware
- ▶ 07/15: Chameleon public availability
- ► 2016&2017: New capabilities and new hardware releases
- ► Today: 1,900+ users/300+ projects

VIRTUALIZATION OR CONTAINERIZATION?

- ► Yuyu Zhou, University of Pittsburgh
- ► Research: lightweight virtualization
- ► Testbed requirements:
 - ► Bare metal reconfiguration
 - ▶ Boot from custom kernel
 - Console access
 - Up-to-date hardware
 - ► Large scale experiments

SC15 Poster: "Comparison of Virtualization and Containerization Techniques for HPC"

EXASCALE OPERATING SYSTEMS

- ► Swann Perarnau, ANL
- Research: exascale operating systems
- ► Testbed requirements:
 - Bare metal reconfiguration
 - Boot kernel with varying kernel parameters
 - ► Fast reconfiguration, many different images, kernels, params
 - Hardware: performance counters, many cores

HPPAC'16 paper: "Systemwide Power Management with Argo"

CLASSIFYING CYBERSECURITY ATTACKS

- ▶ Jessie Walker & team, University of Arkansas at Pine Bluff (UAPB)
- Research: modeling and visualizing multi-stage intrusion attacks (MAS)
- ► Testbed requirements:
 - Easy to use OpenStack installation
 - Access to the same infrastructure for multiple collaborators

TEACHING CLOUD COMPUTING

- Nirav Merchant and Eric Lyons, University of Arizona
- ► ACIC2015: project-based learning course
 - Data mining to find exoplanets
 - Scaled analysis pipeline by Jared Males
 - Develop a VM/workflow management appliance and best practice that can be shared with broader community
- ► Testbed requirements:
 - Easy to use laaS/KVM installation
 - Minimal startup time
 - Support distributed workers
 - Block store: make copies of many 100GB datasets

CREATING DYNAMIC SUPERFACILITIES

- ► NSF CICI SAFE, Paul Ruth, **RENCI-UNC Chapel Hill**
- Creating trusted facilities
 - Automating trusted facility creation
 - Virtual Software Defined Exchange (SDX)
 - Secure Authorization for Federated Environments (SAFE)
- ► Testbed requirements
 - Creation of dynamic VLANs
 - Support for slices and network stitching

DATA SCIENCE RESEARCH

- ► ACM Student Research Competition semi-finalists: *
 - Blue Keleher, University of Maryland
 - Emily Herron, Mercer University
- Searching and image extraction in research repositories
- ► Testbed requirements:
 - Access to distributed storage in various configurations
 - State of the art GPUs
 - Easy to use appliances

'ifif unit': 1 'jfif_version'
'jfif_density' 'extrema': ((0,
'mode_pixel_valu median_pixel_v 'std_dev_pixel_ 'system': {
 'path': '/media 'size': 115811}

'SVM_class_tags': ['

- featuring "collapsed" secondlevel index (SLI)
- SLI references endpoints, not docs, and contains a summary subset of terms
- + Some storage burden on endpoints, but still very low per endpoint
- + Lower storage burden on central servers

TOWARDS A SCIENTIFIC INSTRUMENT

- ▶ **Deploy:** Broaden the set of supported experiments
- ► Capture: observe, monitor, and measure
- ► **Record:** a comprehensive "active record"
 - ► Re-examine, share/publish, review, re-play

DEPLOY: NEW HARDWARE

- 4 new Standard Cloud Units (32 node racks in 2U chassis)
 - ▶ 3x Intel Xeon "Sky Lake" racks (2x @UC, 1x @TACC) -- almost there!
 - ▶ 1x future Intel Xeon rack (@TACC) in Y2
- Corsa DP2000 series switches in Y1
 - 2x DP2400 with 100Gbps uplinks (@UC)
 - ▶ 1x DP2200 with 100Gbps uplink (@TACC)
 - Each switch will have a 10 Gbps connections to nodes in the SCU
 - Alternative Ethernet connection in both racks
- More storage configurations
 - ▶ Global store @UC: 5 servers with 12x10TB disks each
 - ► Additional storage @TACC: 150 TB of NVMes
- Accelerators: 16 nodes with 2 Volta GPUs (8@UC, 8@TACC)
- ► Maintenance, support and reserve

DEPLOY: NETWORKING BUILDING BLOCKS

- Research topics: exploring network programmability, building superfacilities, utilizing high bandwidth
- ▶ Building blocks:
 - ► Multi-tenant networking allows users to provision isolated L2 VLANs and manage their own IP address space available now!
 - Stitching dynamic VLANs from Chameleon to external partners (ExoGENI, ScienceDMZs) – currently in Early User preview, available by end of 2017

DEPLOY: ADVANCED NETWORKING

- ► BYOC Bring your own controller: isolated user controlled virtual OpenFlow switches (~Summer 2018)
- ► Support for large flows: **Neutron Bypass**
- Support stitching over VFCs (Summer 2018)

CAPTURE: THE FOUNDATION

- Testbed versioning
 - ► Fine-grain representation
 - Automated discovery and updates
 - >50 versions since public availability and counting
 - ► Still working on: better firmware version management
- Appliance management
 - Configuration, versioning, publication
 - Still working on: repository vs catalog connection
- Monitoring and logging
 - ► Making it accessible in easier ways
- ► However... the user still has to keep track of this information

CAPTURE: KEEPING TRACK OF EXPERIMENTS

- Everything in a testbed is a recorded event
 - ► The resources you used
 - ► The appliance/image you deployed
 - ▶ The monitoring information your experiment generated
 - ► Plus any information you choose to share with us: e.g., "start power_exp_23" and "stop power_exp_23"
- ► Experiment précis: information about your experiment made available in a "consumable" form
- ► (Bonus: it can be integrated with many existing tools, e.g., Jupyter or Grafana)...

VISUALIZING DATA FROM EXPERIMENTS

Visualizing data from experiments — video from Chameleon YouTube channel at: https://www.youtube.com/watch?v=9EcdF9csFb4&feature=youtu.be

RECORD: MOVING TOWARDS REPEATABILITY

- ► Experiment précis
 - ▶ Recording the experiment for you: closing the gap between resource versions, appliances, and events
 - "Active record" that can be given to a reviewer or shared with others
- Publishing experiment précis
- ► Integration with popular tools
- From experiment précis to experiment replays
 - Model-based experiment capture
 - ► Re-play tools

PARTING THOUGHTS

- ► A testbed for Computer Science research
 - ▶ Open production testbed for Computer Science research: 1,900+ users/300+ projects
 - Designed from the ground up for a large-scale testbed supporting deep reconfigurability
 - ▶ Blueprint for a sustainable production testbed: powered by OpenStack
- ▶ Towards an instrument: capture, record, replay
 - Making repeatability/reproducibility cost-effective
 - ► Integrating with popular tools
 - ► Helping you leverage incentives (ACM badges, conference awards, etc.)

www. chameleoncloud.org

Help us all dream big:

www.chameleoncloud.org

keahey@anl.gov

