

www.chameleoncloud.org

CHAMELEON: BUILDING A RECONFIGURABLE EXPERIMENTAL TESTBED FOR CLOUD RESEARCH

Kate Keahey

keahey@anl.gov

NSF Workshop on Sustainable Data Centers June 22-23

Stanford University, Palo Alto, CA

JULY 16, 2015

CHAMELEON: A FLEXIBLE AND POWERFUL EXPERIMENTAL INSTRUMENT

- ► Large-scale: "Big Data, Big Compute, Big Instrument research"
 - ► ~650 nodes (~14,500 cores), 5 PB disk over two sites, 2 sites connected with 100G network
- Reconfigurable: "As close as possible to having it in your lab"
 - From bare metal reconfiguration to clouds
 - Support for repeatable and reproducible experiments
- Connected: "One stop shopping for experimental needs"
 - Workload and Trace Archive
 - Partnerships with production clouds: CERN, OSDC, Rackspace, Google, and others
 - Partnerships with users
- Complementary: "Can't do everything ourselves"
 - ► Complementing GENI, Grid'5000, and other experimental testbeds

CHAMELEON HARDWARE

To UTSA, GENI, Future Partners

Switch

Standard **Cloud Unit** 42 compute 4 storage x2

Core Services Front End and Data **Mover Nodes**

504 x86 Compute Servers 48 Dist. Storage Servers 102 Heterogeneous Servers **16 Mgt and Storage Nodes**

Chameleon Core Network

100Gbps uplink public network (each site)

Chicago Austin

SCUs connect to core and fully connected to each other

Switch

Standard

Cloud Unit

42 compute

4 storage

x10

Core Services

3.6 PB Central File Systems, Front End and Data Movers

Heterogeneous **Cloud Units Alternate Processors**

and Networks

EXPERIMENTAL WORKFLOW

CHI: SELECTING AND VERIFYING RESOURCES

- Complete, fine-grained and up-to-date representation
- ► Machine parsable, enables match making
- Versioned
 - "What was the drive on the nodes I used 6 months ago?"
- Dynamically Verifiable
 - ▶ Does reality correspond to description? (e.g., failures)
- ► Grid'5000 Registry
 - ► Automated resource description, automated export to RM
- ► G5K-checks
 - Run at boot, acquire information, compare with resource catalog description

CHI: PROVISIONING RESOURCES

- Resource leases
- ► Allocating a range of resources
 - ▶ Different node types, switches, etc.
- Multiple environments in one lease
- Advance reservations (AR)
 - Sharing resources across time

Extensions to support working with more resources, match making, and displays

CHI: CONFIGURE AND INTERACT

- ► Map multiple appliances to a lease
- Allow deep reconfiguration (incl. BIOS)
- ▶ Snapshotting
- Efficient appliance deployment
- ► Handle complex appliances
 - ▶ Virtual clusters, cloud installations, etc.
- ► Interact: reboot, power on/off, access to console
- Shape experimental conditions
- OpenStack Ironic, Glance, and meta-data servers

CHI: MONITORING

- Enables users to understand what happens during the experiment
- ► Types of monitoring
 - User resource monitoring
 - ► Infrastructure monitoring (e.g., PDUs)
 - Custom user metrics
- ► High-resolution metrics
- ► Easily export data for specific experiments
- OpenStack Ceilometer

PROJECT TIMELINE

- ► Started 09/2014
- Currently:
 - FutureGrid@Chameleon (OpenStack KVM cloud)
 - Chameleon Technology Preview (bare metal)
 - ► Early Users: homogenous hardware available to Early Users
 - ▶ Overall: 57 projects, 102 users, 40 institutions
- ► Fall 2015: Large-scale homogenous partitions and bare metal reconfiguration generally available
- ► 2015/2016: Refinements to experiment management capabilities, higher level capabilities
- ► Fall 2016: Heterogeneous hardware available

PARTING THOUGHTS

Work on your next research project @ www.chameleoncloud.org!

The most important element of any experimental testbed is users and the research they work on

- Building operations for long-term sustainability
- Potential for extending operations
- Creating a forum for collaboration between research community and practitioners
 - Workshops, traces, funding opportunities and other forms of engagement

